无人机助力电力设备螺母缺销智能检测识别,python基于YOLOv5开发构建电力设备螺母缺销小目标检测识别系统

传统作业场景下电力设备的运维和维护都是人工来完成的,随着现代技术科技手段的不断发展,基于无人机航拍飞行的自动智能化电力设备问题检测成为了一种可行的手段,本文的核心内容就是基于YOLOv7来开发构建电力设备螺母缺销检测识别系统,首先看下实例效果:

这里有别于前文:
《无人机助力电力设备螺母缺销智能检测识别,python基于YOLOv7开发构建电力设备螺母缺销高分辨率图像小目标检测系统》

前文主要侧重:高分辨率图像和小目标这两个关键的任务点,而本文则在是子图的基础上直接开发构建目标检测模型,完成推理计算的。

数据集如下所示:

本文一共开发了两款不同参数量级的检测模型分别是n系列模型和s系列的模型。

训练数据配置文件如下所示:

# Dataset
path: ./dataset
train:- images/train
val:- images/test
test:- images/test# Classes
names:0: DefectPin1: Nut2: NormalPin

yolov5n模型文件如下所示:

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 3  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

yolov5s模型文件如下所示:

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 3  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32#Backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]#Head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

在训练阶段默认保持完全相同的训练参数设置,等待训练完成后,来整体对比分析结果。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

【loss对比曲线】

整体对比不难看出来:n系列本身参数量级很小最终的精度也是相差s系列模型一截,在推理速度上n系列模型优于s系列的模型但是并没有非常大的优势,所以最终项目使用的话还是会优先考量s系列的模型,如果硬件算力允许的情况下还是可以上探到m系列的模型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/189246.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从自动化、数字化到智能化,鸿蒙与制造业的双向奔赴

终端万物互联,商业竞争瞬息万变,制造企业面临着数字化转型与产品智能化升级的双重考验。鸿蒙操作系统以统一操作系统方案,可以为制造企业解决设备生态碎片化以及跨终端对接问题,提供安全性、流畅度、多屏协同等功能,实…

Mybatis 的操作(续集)

Mybatis 是一款优秀的 持久性 框架,用于简化 JDBC 的开发 持久层 : 指的就是持久化操作的层,通常指数据访问层(dao),是用来操作数据库的 简单来说 Mybatis 是更简单完成程序和数据库交互的框架 Mybatis 的写法有两种 : 1.xml 2.注解 这两者各有利弊,后面进行总结 Mybati…

pixhawk在树莓派上直接烧录固件

环境 树莓派4Bubuntu20.04 pixhawk2.4.8 执行 在ardupilo根目录下敲指令 ./waf configure --board fmuv3 ./waf sub ./waf --targets bin/adusub --upload过程 pixhawk通过usb接入树莓派中,在烧录过程如果出现以下情况则需要拔插usb线 会擦除原有固件&#xf…

【详细版】基于AWS EC2使用Docker安装部署Superset v2.0

文章目录 1. SuperSet介绍2. 实验说明3. 实验配置4. SSH连接云实例5. 系统版本查看6. 主机名映射7. Docker安装[可选] Docker Compose安装8. 安装superset9. 初始化superset容器10. 为superset加入连接Athena需要的依赖11. 为superset准备一个具有权限的IAM用户12. 添加此IAM用…

ESP32-Web-Server编程- 通过滑动条向 Web 提交数据

ESP32-Web-Server编程- 通过滑动条向 Web 提交数据 概述 上一节我们讲述了通过文本框向 ESP32 发送字符串、数字。有时,我们需要向 ESP32 发送连续的值,这种需求可以通过在网页端实现滑动条来实现。 需求及功能解析 本节演示如何在 ESP32 上部署一个…

Spring @Cacheable缓存注解

一、简介 缓存介绍 缓存,在我们的日常开发中用的非常多,是我们应对各种性能问题支持高并发的一大利器。 Spring 从 3.1 开始就引入了缓存的支持。定义了如下两个接口来统一支持不同的缓存技术。 org.springframework.cache.Cacheorg.springframework.ca…

这个sql有点东西,记录一下

我有一个需求:在订单表里面查询指定时间的订单数据,如果要是没有订单的话,需要展示当天日期和数据,数据为0 先看一下效果: 话不多说,直接上SQL SELECTdate_range.date AS 日期,COUNT( oco.id ) AS 总订单…

Hdoop学习笔记(HDP)-Part.14 安装YARN+MR

十四、安装YARNMR 1.MR中间结果存储权限 使用Yarn提交MapReduce任务的时候,中间结果会保存在HDFS,/user/username/,如果/user目录下用户目录下不存在,则被创建,当MR执行结束之后,中间结果会被删除&#x…

【多线程】-- 08 线程状态观测、线程优先级、守护线程

多线程 5 线程状态 5.5 线程状态观测 Thread.State线程可以处于以下状态之一: NEW:尚未启动的线程处于此状态RUNNABLE:在Java虚拟机中执行的线程处于此状态BLOCKED:被阻塞等待监视器锁定的线程处于此状态WAITING:正…

英语助教求职简历模板(通用10篇)

以下10篇简历内容以英语助教招聘需求为背景制作,大家可以借鉴参考,希望能帮助大家在众多候选人中脱颖而出。 英语助教求职简历下载(可在线制作):百度幻主简历 英语助教简历1: 求职意向 求职类型:全职 …

Jmeter分布式压测

一、jmeter为什么要做分布式压测 jmeter本身的局限性 一台压力机的 Jmeter 支持的线程数受限于 Jmeter 其本身的机制和硬件配置(内存、CPU等)是有限的由于 Jmeter 是 Java 应用,对 CPU 和内存的消耗较大,在需要模拟大量并发用户…

GPT市场将取代插件商店 openAI已经关闭plugins申请,全部集成到GPTs(Actions)来连接现实世界,可以与物理世界互动了。

Actions使用了plugins的许多核心思想,也增加了新的特性。 ChatGPT的"Actions"与"Plugins"是OpenAI在GPT模型中引入的两种不同的功能扩展机制。这两种机制的目的是增强模型的功能,使其能够处理更多样化的任务和请求。下面是对两者的比…

熬夜会秃头——Beta冲刺总结随笔

这个作业属于哪个课程2301-计算机学院-软件工程社区-CSDN社区云这个作业要求在哪里团队作业—beta冲刺事后诸葛亮-CSDN社区这个作业的目标总结Beta冲刺团队名称熬夜会秃头团队置顶集合随笔链接熬夜会秃头——Beta冲刺置顶随笔-CSDN社区 目录 一、Beta冲刺开始前设立的任务完成…

VMware虚拟机搭建+云平台购买搭建(阿里云+UCloud)【设置主机名以及主机名映射、配置免密登录、配置JDK】

本地虚拟机的搭建 一、准备网段 在VMware的虚拟网络编辑器中将VMnet8虚拟网卡的 网段设置为:192.168.88.0网关设置为:192.168.88.2 二、下载CentOS操作系统文件,并安装 三、克隆多台虚拟机 依照同样的方法,克隆出node2…

设计模式精讲:掌握工厂方法与抽象工厂的精髓

设计模式精讲:掌握工厂方法与抽象工厂的精髓 一、引言:如何学习设计模式?二、工厂方法(也叫工厂模式)2.1、代码结构2.2、符合的设计原则2.3、小结 三、抽象工厂3.1、代码结构3.2、符合的设计原则3.3、小结 总结 一、引…

rust持续学习 COW

COW我第一次看见还以为是奶牛 很奇怪是个啥 后来了解到是clone on write 缩写的,大乌龙啊 这个有两种enum,一种是borrow,一种是own rust中,数据读写经常涉及到所有权 这个borrow,很显然,就是不可变借用了 own就是可以写…

北邮22级信通院数电:Verilog-FPGA(12)第十二周实验(2)彩虹呼吸灯

北邮22信通一枚~ 跟随课程进度更新北邮信通院数字系统设计的笔记、代码和文章 持续关注作者 迎接数电实验学习~ 获取更多文章,请访问专栏: 北邮22级信通院数电实验_青山如墨雨如画的博客-CSDN博客 目录 一.代码部分 二.管脚分配 三.实验效果 一.代…

大势智慧荣获2023光合组织解决方案大赛人工智能赛道标杆奖及争先奖!

近日,2023年第三届光合组织解决方案大赛获奖名单正式公布。大势智慧以基于国产化平台的实景三维全流程解决方案,突破层层选拔,最终荣获“集智计划”(人工智能赛道)标杆奖及争先奖。 实景三维是我国的数字基础设施&…

【Go】protobuf介绍及安装

目录 一、Protobuf介绍 1.Protobuf用来做什么 2. Protobuf的序列化与反序列化 3. Protobuf的优点和缺点 4. RPC介绍 <1>文档规范 <2>消息编码 <3>传输协议 <4>传输性能 <5>传输形式 <6>浏览器的支持度 <7>消息的可读性和…