Hdoop学习笔记(HDP)-Part.14 安装YARN+MR

十四、安装YARN+MR

1.MR中间结果存储权限

使用Yarn提交MapReduce任务的时候,中间结果会保存在HDFS,/user/username/,如果/user目录下用户目录下不存在,则被创建,当MR执行结束之后,中间结果会被删除,目录保留。因此需要在Ranger中对/user的权限做策略。
在这里插入图片描述

2.安装服务

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
YARN的部分存储路径调整:
Node Manager
YARN NodeManager Local directories:/data01/hadoop/yarn/local
YARN NodeManager Log directories:/data01/hadoop/yarn/log
Application Timeline Server
yarn.timeline-service.leveldb-state-store.path:/data01/hadoop/yarn/timeline
yarn.timeline-service.leveldb-timeline-store.path:/data01/hadoop/yarn/timeline
Advanced yarn-hbase-env
is_hbase_system_service_launch:true
use_external_hbase:false
YARN可使用内置的HBase数据库,也可以使用外部;使用内置时,需要is_hbase_system_service_launch设置为true
Advanced ranger-yarn-security
Add YARN Authorization:取消勾选
该选项是禁用YARN本身的ACL权限控制,YARN队列的权限控制由RANGER统一管理
注:需要先对NameNode页面的认证取消了,否则ResourceManager修改后也不生效
MAPREDUCE2的部分存储路径调整:
Advanced mapred-site
mapreduce.jobhistory.recovery.store.leveldb.path:/data01/hadoop/mapreduce/jhs
Custom mapred-site
mapred.local.dir:/data01/hadoop/mapred
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.ResourceManager HA

(1)启用HA

在ACTIONS->Enable ResourceManager HA中配置
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(2)确认配置文件

启用HA后,会在/etc/hadoop/conf/yarn-site.xml中出现如下关于HA的配置项
在这里插入图片描述
指定zk下对应的文件目录为/yarn-leader-election,对应的rm节点为hdp01.hdp.com和hdp02.hdp.com
在zookeeper中查看也同样生成了对应的文件目录
在这里插入图片描述

(3)确认YARN、MR2配置

①CPU资源调度
目前的CPU被划分为虚拟CPU,这里的虚拟CPU是yarn自己引入的概念,因为每个服务器的CPU计算能力不一样,有的机器可能是其他机器计算能力的两倍,然后可以通过多配置几个虚拟CPU弥补差异。在yarn中,CPU的相关配置如下:
yarn.nodemanager.resource.cpu-vcores
表示该节点上YARN可使用的虚拟CPU个数,默认是8,注意,目前推荐将该值设置为与物理CPU核数数目相同。如果节点CPU核数不够8个,则需要调减小这个值,而YARN不会智能的探测节点的物理CPU总数。
yarn.scheduler.minimum-allocation-vcores
单个任务可申请的最小虚拟CPU个数,默认是1,如果一个任务申请的CPU个数少于该数,则该对应的值改为这个数。
yarn.scheduler.maximum-allocation-vcores
单个任务可申请的最多虚拟CPU个数,默认是4。这里说的cpu个数都是说的虚拟cpu,默认的是1个物理cpu=2个虚拟cpu。
②Memory资源调度
yarn一般允许用户配置每个节点上可用的物理资源,注意,这里是"可用的",不是物理内存多少,就设置多少,因为一个服务器节点上会有若干的内存,一部分给yarn,一部分给hdfs,一部分给hbase。在yarn中,Memory相关的配置如下:
yarn.nodemanager.resource.memory-mb
设置该节点上yarn可使用的内存,默认为8G,如果节点内存资源不足8G,要减少这个值,yarn不会智能的去检测内存资源,一般这个设置yarn的可用内存资源
yarn.scheduler.minimum-allocation-mb
单个任务可申请的最小的内存大小,默认是1G,当内存不够时,会自动按照一定大小累加内存。
yarn.scheduler.maximum-allocation-mb
单个任务最大申请物理内存量,默认为8291MB
③示例
以hdp03-05(8C、8G)为例,
yarn.nodemanager.resource.cpu-vcores 虚拟core
这个参数根据自己生产服务器决定,比如服务器很富裕,那就直接1:1,设置成8,如果服务器不是很富裕,那就直接成1:2,设置成8,本次设置为16
yarn.nodemanager.resource.memory-mb 总内存
生产上一般要预留15-20%的内存,那么可用内存就是8*0.8=6.4G,本次设置为6G
yarn.scheduler.minimum-allocation-mb 单任务最小内存
如果设置成500M,那6/0.5 = 12,就是最多可以跑12个container
如果设置成1G,那6/1 = 6,就是最多可以跑6个container
本次设置为1G
yarn.scheduler.minimum-allocation-vcores 单任务最少vcore
如果设置vcore = 1,那么16/1 = 16,就是最多可以跑16个container,如果设置成这个,根据上面内存分配的情况,最多只能跑6个container,vcore有点浪费
如果设置vcore = 2,那么16/2 = 8,就是最多可以跑8个container
yarn.scheduler.maximum-allocation-vcores 单任务最多vcore
一般就设置成4个,cloudera公司做过性能测试,如果cpu大于等于5之后,cpu利用率反而不是很好(固定经验值)
yarn.scheduler.maximum-allocation-mb 单任务最大内存
这个要根据实际业务设定,如果有大任务

4.测试

(1)创建租户并分配对应的资源队列

在这里插入图片描述
跳转至YARN Queue Manager页面,针对之前的租户tenant1和tenant2,新建资源队列,注意所有队列总和要为100%,否则会报错
在这里插入图片描述
在这里插入图片描述
租户与队列资源关系绑定
[u | g] [username : groupname] [yarn队列的名字]
本次绑定为
u:tenant1:tenant1,u:tenant2:tenant2
在这里插入图片描述
保存本次操作内容
在这里插入图片描述
查看resourcemanager页面,可以看到已经更新出新的资源队列
在这里插入图片描述

(2)队列使用权限

可使用官方提供的测试jar包
https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-mapreduce-examples
在OpenLDAP中创建账号ranger_yarn,重启UserSync服务后将账号同步至Ranger中,然后在kerberos中创建同样的账号(注:该测试jar包只能用账号ranger_yarn,队列offline)

kadmin.local
addprinc -randkey ranger_yarn
ktadd -kt /root/keytab/ranger_yarn.keytab ranger_yarn

在Yarn中创建队列及账号与队列的映射关系
在这里插入图片描述
队列offline、账号ranger_yarn都准备好后,在Ranger上创建授权关系
在这里插入图片描述
① 计算圆周率
使用ranger_yarn登录,运行计算圆周率任务

kinit -kt /root/keytab/ranger_yarn.keytab ranger_yarn
hadoop jar /root/hadoop-mapreduce-examples-3.1.1.3.0.1.4-1.jar pi -Dmapred.job.queue.name=offline 10 50

hadoop jar是hadoop运行jar包命令
第一个参数pi:表示MapReduce程序执行圆周率计算
第二个参数:用于指定map阶段运行的任务次数,并发度,这是是10
第三个参数:用于指定每个map任务取样的个数,这里是50
在这里插入图片描述
在Yarn中可查看Application的信息
在这里插入图片描述
此时在运行jar包时指定队列为tenant1,执行报错,说明权限

② 单词词频统计
首先创建要统计词频的文件,并上传到hdfs上,提前做好对ranger_yarn的hdfs授权

kinit -kt /etc/security/keytabs/nn.service.keytab nn/hdp01.hdp.com@HDP315.COM
hdfs dfs -mkdir /testhdfs/ranger_yarn
kinit -kt /root/keytab/ranger_yarn.keytab ranger_yarn
hdfs dfs -put /root/wordcount_input /testhdfs/ranger_yarn
hdfs dfs -ls /testhdfs/ranger_yarn

运行词频统计jar包

kinit -kt /root/keytab/ranger_yarn.keytab ranger_yarn
hadoop jar /root/hadoop-mapreduce-examples-3.1.1.3.0.1.4-1.jar wordcount -Dmapred.job.queue.name=offline /testhdfs/ranger_yarn/wordcount_input /testhdfs/ranger_yarn/wordcount_output

第一个参数:wordcount表示执行单词统计
第二个参数:指定输入文件的路径
第三个参数:指定输出结果的路径(该路径不能已存在)
统计完成会在输出目录生成结果

hdfs dfs -cat /testhdfs/ranger_yarn/wordcount_output/part-r-00000

在这里插入图片描述

5.常用指令

(1)查看命令

yarn application -list
yarn application -list -appStates <ALL,NEW,NEW_SAVING,SUBMITTED,ACCEPTED,RUNNING,FINISHED,FAILED,KILLED>

(2)Kill命令
根据id杀死任务

yarn application -kill <application_id>

(3)查看日志
查询Application日志

yarn logs -applicationId <ApplicationId>

查询Container日志

yarn logs -applicationId -containerId <ApplicationId> -containerId <ContainerId>

(4)查看尝试运行的任务
查看尝试运行的任务

yarn applicationattempt -list<ApplicationId>

查看尝试运行任务的状态

yarn applicationattempt -status <ApplicationAttemptId>

(5)查看容器
列出所有Container

yarn container -list <ApplicationAttemptId>

打印Container状态

yarn container -status <ContainerId>

6.常见报错

(1)Timeline Service启动报错

启动时报错:

java.util.concurrent.ExecutionException: org.apache.zookeeper.KeeperException$NoNodeException: KeeperErrorCode = NoNode for /atsv2-hbase-secure/hbaseid

在这里插入图片描述
在Yarn中的CONFIGS->ADVANCED->Advanced yarn-hbase-env中,将is_hbase_system_service_launch启用
在这里插入图片描述

(2)History Server启动一会后报错

启动时无报错,等几分钟后报错并停止,在hdp02上查看日志,/var/log/hadoop-mapreduce/mapred/hadoop-mapred-historyserver-hdp02.log
报错信息为:

Error creating intermediate done directory: [hdfs://hdp315:8020/mr-history/tmp]
Permission denied: user=mapred, access=WRITE, inode="/mr-history"

在这里插入图片描述
查看hdfs上的目录权限,确认权限归属无问题
在这里插入图片描述
原因是Ranger上取消了联合授权功能,在Ranger上没有对应的策略开放该目录,导致mapred用户无法访问对应的目录,开启联合授权功能后恢复。

(3)告警:ATS embedded HBase is NOT running on hdp01.hdp.com

告警信息:ATS embedded HBase is NOT running on hdp01.hdp.com
在这里插入图片描述
resourceMananger的JVM内存是1G,内存太小导致的,将ResourceManager中的Java heap size的JVM内存增加到了2048MB
在这里插入图片描述
重启Yarn服务后告警消失

(4)提交任务后状态一直为ACCEPTED

主要可能的原因是分配给容器的内存过小导致,正常情况下需要适当调整分配内存,本次是因为总体内存量不大,而在分配queue:offline的时候,设置的资源大小为5%,导致无法正常运行,而是一直停留在分配资源阶段,重新分配队列资源大小后恢复。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/189237.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【多线程】-- 08 线程状态观测、线程优先级、守护线程

多线程 5 线程状态 5.5 线程状态观测 Thread.State线程可以处于以下状态之一&#xff1a; NEW&#xff1a;尚未启动的线程处于此状态RUNNABLE&#xff1a;在Java虚拟机中执行的线程处于此状态BLOCKED&#xff1a;被阻塞等待监视器锁定的线程处于此状态WAITING&#xff1a;正…

英语助教求职简历模板(通用10篇)

以下10篇简历内容以英语助教招聘需求为背景制作&#xff0c;大家可以借鉴参考&#xff0c;希望能帮助大家在众多候选人中脱颖而出。 英语助教求职简历下载&#xff08;可在线制作)&#xff1a;百度幻主简历 英语助教简历1&#xff1a; 求职意向 求职类型&#xff1a;全职 …

Jmeter分布式压测

一、jmeter为什么要做分布式压测 jmeter本身的局限性 一台压力机的 Jmeter 支持的线程数受限于 Jmeter 其本身的机制和硬件配置&#xff08;内存、CPU等&#xff09;是有限的由于 Jmeter 是 Java 应用&#xff0c;对 CPU 和内存的消耗较大&#xff0c;在需要模拟大量并发用户…

GPT市场将取代插件商店 openAI已经关闭plugins申请,全部集成到GPTs(Actions)来连接现实世界,可以与物理世界互动了。

Actions使用了plugins的许多核心思想&#xff0c;也增加了新的特性。 ChatGPT的"Actions"与"Plugins"是OpenAI在GPT模型中引入的两种不同的功能扩展机制。这两种机制的目的是增强模型的功能&#xff0c;使其能够处理更多样化的任务和请求。下面是对两者的比…

熬夜会秃头——Beta冲刺总结随笔

这个作业属于哪个课程2301-计算机学院-软件工程社区-CSDN社区云这个作业要求在哪里团队作业—beta冲刺事后诸葛亮-CSDN社区这个作业的目标总结Beta冲刺团队名称熬夜会秃头团队置顶集合随笔链接熬夜会秃头——Beta冲刺置顶随笔-CSDN社区 目录 一、Beta冲刺开始前设立的任务完成…

VMware虚拟机搭建+云平台购买搭建(阿里云+UCloud)【设置主机名以及主机名映射、配置免密登录、配置JDK】

本地虚拟机的搭建 一、准备网段 在VMware的虚拟网络编辑器中将VMnet8虚拟网卡的 网段设置为&#xff1a;192.168.88.0网关设置为&#xff1a;192.168.88.2 二、下载CentOS操作系统文件&#xff0c;并安装 三、克隆多台虚拟机 依照同样的方法&#xff0c;克隆出node2…

设计模式精讲:掌握工厂方法与抽象工厂的精髓

设计模式精讲&#xff1a;掌握工厂方法与抽象工厂的精髓 一、引言&#xff1a;如何学习设计模式&#xff1f;二、工厂方法&#xff08;也叫工厂模式&#xff09;2.1、代码结构2.2、符合的设计原则2.3、小结 三、抽象工厂3.1、代码结构3.2、符合的设计原则3.3、小结 总结 一、引…

rust持续学习 COW

COW我第一次看见还以为是奶牛 很奇怪是个啥 后来了解到是clone on write 缩写的&#xff0c;大乌龙啊 这个有两种enum,一种是borrow&#xff0c;一种是own rust中&#xff0c;数据读写经常涉及到所有权 这个borrow&#xff0c;很显然&#xff0c;就是不可变借用了 own就是可以写…

北邮22级信通院数电:Verilog-FPGA(12)第十二周实验(2)彩虹呼吸灯

北邮22信通一枚~ 跟随课程进度更新北邮信通院数字系统设计的笔记、代码和文章 持续关注作者 迎接数电实验学习~ 获取更多文章&#xff0c;请访问专栏&#xff1a; 北邮22级信通院数电实验_青山如墨雨如画的博客-CSDN博客 目录 一.代码部分 二.管脚分配 三.实验效果 一.代…

大势智慧荣获2023光合组织解决方案大赛人工智能赛道标杆奖及争先奖!

近日&#xff0c;2023年第三届光合组织解决方案大赛获奖名单正式公布。大势智慧以基于国产化平台的实景三维全流程解决方案&#xff0c;突破层层选拔&#xff0c;最终荣获“集智计划”&#xff08;人工智能赛道&#xff09;标杆奖及争先奖。 实景三维是我国的数字基础设施&…

【Go】protobuf介绍及安装

目录 一、Protobuf介绍 1.Protobuf用来做什么 2. Protobuf的序列化与反序列化 3. Protobuf的优点和缺点 4. RPC介绍 <1>文档规范 <2>消息编码 <3>传输协议 <4>传输性能 <5>传输形式 <6>浏览器的支持度 <7>消息的可读性和…

R语言实验三

1、读取一个文件并进行如下操作。 ①使用命令清空工作空间&#xff0c;使用read.table读取exam_1.txt文件&#xff0c;将文件保存到data变量中&#xff0c;数据第一行设置为列名&#xff0c;第一列是行名。 ②判断对象data是否为矩阵。 ③将对象转换为矩阵&#xff0c;记为d…

【SpringBoot3+Vue3】七【后续2】【番外篇】- (使用docke部署)

目录 一、maven打包后端服务 1、clean 2、package 3、查看jar包 二、部署java后端服务 1、使用dockerfile构建一个java17的镜像 1.1 使用dokcerfile构建容器命令 1.2 方式一 将jar打包进容器镜像 1.3 方式二 jar不打包进容器镜像&#xff0c;通过映射主机目录映射方式…

mysql 查询提取json 并去除双引号

1.建表语句 CREATE TABLE uset_test_demo (id bigint(20) NOT NULL AUTO_INCREMENT,context text,PRIMARY KEY (id) ) ENGINEInnoDB AUTO_INCREMENT4 DEFAULT CHARSETutf8;2.源数据 {"title": "Harry Potter","author": "J.K. Rowling&qu…

Linux基础项目开发1:量产工具——文字系统(四)

前言&#xff1a; 前面我们已经把显示系统&#xff0c;输入系统的框架搭建好了&#xff0c;那么有了输入和显示&#xff0c;显示的内容应该是什么呢&#xff1f;这节就要让我们一起对显示的内容&#xff0c;文字系统进行搭建。 目录 一、数据结构抽象 1.描述一个文字的位图&a…

ubuntu系统下搭建本地物联网mqtt服务器的步骤

那么假如我们需要做一些终端设备&#xff0c;例如温湿度传感器、光照等物联网采集设备要接入呢&#xff1f;怎么样才能将数据报送到服务器呢&#xff1f; 以下内容基于我们ubuntu系统下的emqx成功启动的基础上。我们可以用浏览器键入控制板的地址&#xff0c;如果启动成功&…

特征相关性计较

Pearson相关系数 用于度量两个连续型变量之间的线性关系。取值范围在-1到1之间&#xff0c;0表示无线性关系&#xff0c;1表示完全正相关&#xff0c;-1表示完全负相关 import pandas as pd# 创建一个包含两个连续型变量的DataFrame data {Variable1: [1, 2, 3, 4, 5],Vari…

iOS简单理解区分MVC、MVP、MVVM

MVC、MVP、MVVM 前言 这篇文章简单介绍MVC、MVP和MVVM三种架构&#xff0c;并配上一个简单的Swift demo来区分MVC和MVVM两种架构。 MVC 传统MVC 下图是传统结构MVC&#xff0c;可以看到这种结构是紧耦合的&#xff0c;不推荐使用。 苹果的MVC 如下图&#xff0c;这是苹果…

AI产业前瞻报告:探讨GPTs背后的产业逻辑:拉开AIGC应用生态的帷幕

今天分享的是AI系列深度研究报告&#xff1a;《AI产业前瞻报告&#xff1a;探讨GPTs背后的产业逻辑&#xff1a;拉开AIGC应用生态的帷幕》。 &#xff08;报告出品方&#xff1a;光大证券&#xff09; 报告共计&#xff1a;13页 1、GPTs 拉开 AIGC 应用生态的帷幕 1.1、 Ope…