动手学深度学习(四)---多层感知机

文章目录

  • 一、理论知识
    • 1.感知机
    • 2.XOR问题
    • 3.多层感知机
    • 4.多层感知机的从零开始实现
  • 【相关总结】
    • 1.torch.randn()
    • 2.torch.zeros_like()

一、理论知识

1.感知机

给定输入x,权重w,和偏移b,感知机输出:
在这里插入图片描述
在这里插入图片描述

2.XOR问题

感知机不能拟合XOR问题,他只能产生线性分割面
在这里插入图片描述

3.多层感知机

多层感知机和softmax没有本质区别,只是多加了一层隐藏层 没有隐藏层就是softmax回归,加上隐藏层就是多层感知机

4.多层感知机的从零开始实现

import torch
from torch import nn
from d2l import torch as d2lbatch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

2.实现一个具有单隐藏层的多层感知机,他包含256个隐藏单元

num_inputs, num_outputs, num_hiddens = 784, 10, 256
# 28 * 28# 声明是torch的Parameter
W1 = nn.Parameter(
#     生成随机数字的tensortorch.randn(num_inputs, num_hiddens, requires_grad=True))
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad = True))
W2 = nn.Parameter(torch.randn(num_hiddens, num_outputs, requires_grad=T rue))
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))params = [W1, b1, W2, b2]

【相关总结】

1.torch.randn()

生成随机数字的tensor
这些随机数字满足标准正态分布
torch.randn(size) size可以为一个数字或者一个元组

import torch
x = torch.randn(3)
y = torch.randn(2,3)
print(x)
print(y)

tensor([-0.1201, -1.0340, 0.7885])
tensor([[-0.5694, 0.0461, 1.0315],
[-1.0342, -0.9757, -0.1844]])

2.torch.zeros_like()

torch.zeros_like(input, dtype=None, layout=None, device=None, requires_grad=False)
返回一个与给定输入张量形状和数据类型相同,但所有元素都被设置为零的新张量。

import torchx = torch.tensor([[1, 2, 3],[4, 5, 6],[7, 8, 9]])
y = torch.zeros_like(x)
print(y)

tensor([[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/170112.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【2023 云栖】阿里云田奇铣:大模型驱动 DataWorks 数据开发治理平台智能化升级

云布道师 本文根据 2023 云栖大会演讲实录整理而成,演讲信息如下: 演讲人:田奇铣 | 阿里云 DataWorks 产品负责人 演讲主题:大模型驱动 DataWorks 数据开发治理平台智能化升级 随着大模型掀起 AI 技术革新浪潮,大数…

2017年8月3日 Go生态洞察:贡献者峰会探秘

🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文…

信息学奥赛一本通1331:【例1-2】后缀表达式的值

1331:【例1-2】后缀表达式的值 时间限制: 10 ms 内存限制: 65536 KB 提交数: 54713 通过数: 13547 【题目描述】 从键盘读入一个后缀表达式(字符串),只含有0-9组成的运算数及加()、减&#xf…

Flutter开发警告Constructors in ‘@immutable‘ classes should be declared as ‘const‘

文章目录 警告信息报错代码警告原因修改后的代码 警告信息 Flutter开发遇到如下警告 Constructors in ‘immutable’ classes should be declared as ‘const’. 报错代码 class TaskWidget extends StatefulWidget {final String title;final bool isChecked;final int ord…

Java中static、final、static final的区别

文章目录 finalstaticstatic final final final可以修饰:属性,方法,类,局部变量(方法中的变量) final修饰的属性的初始化可以在编译期,也可以在运行期,初始化后不能被改变。 final修…

案例-某验四代滑块反爬逆向研究二

系列文章目录 第一部分 案例-某验四代滑块反爬逆向研究一 第二部分 案例-某验四代滑块反爬逆向研究二 文章目录 系列文章目录前言一、js文件加载先后顺序二、每次刷新都会初始化 device_id, 所以追栈可以知道它从哪执行的三、删除node中的检测点(vm忽视&#xff09…

Cesium-terrain-builder编译入坑详解

本以为编译cesium-terrian-tools编译应该没那么难,不想问题重重,不想后人重蹈覆辙,也记录下点点滴滴。 目前网上存在的cesium代码版本主要有两个分支: 原始网站【不能生成layer文件,且经久不更新,使用gdal…

[PyTorch][chapter 64][强化学习-DQN]

前言: DQN 就是结合了深度学习和强化学习的一种算法,最初是 DeepMind 在 NIPS 2013年提出,它的核心利润包括马尔科夫决策链以及贝尔曼公式。 Q-learning的核心在于Q表格,通过建立Q表格来为行动提供指引,但这适用于状态…

YOLOv5改进 | 添加SE注意力机制 + 更换NMS之EIoU-NMS

前言:Hello大家好,我是小哥谈。为提高算法模型在不同环境下的目标识别准确率,提出一种基于改进 YOLOv5 深度学习的识别方法(SE-NMS-YOLOv5),该方法融合SE(Squeeze-and-Excitation)注…

【pytest】Hooks函数之统计测试结果(pytest_terminal_summary)

前言 用例执行完成后,我们希望能获取到执行的结果,这样方便我们快速统计用例的执行情况。 也可以把获取到的结果当成总结报告,发邮件的时候可以先统计测试结果,再加上html的报告。 pytest_terminal_summary 关于TerminalReporter…

Python pandas数据分析

Python pandas数据分析: 2022找工作是学历、能力和运气的超强结合体,遇到寒冬,大厂不招人,可能很多算法学生都得去找开发,测开 测开的话,你就得学数据库,sql,oracle,尤其…

易错知识点(数学一)

一、反常积分判敛 1、构造使其极限等于一个大于0的常数 1)前者通过:化等价无穷小 or 泰勒展开 2)若存在p>1使得等式成立,则收敛 考察形式:1、已知收敛,求f(x)中的幂次取值范围 主要思想:比较…

⑧【HyperLoglog】Redis数据类型:HyperLoglog [使用手册]

个人简介:Java领域新星创作者;阿里云技术博主、星级博主、专家博主;正在Java学习的路上摸爬滚打,记录学习的过程~ 个人主页:.29.的博客 学习社区:进去逛一逛~ Redis HyperLoglog ⑧Redis HyperLoglog基本操…

基于SpringBoot+Redis的前后端分离外卖项目-苍穹外卖(七)

分页查询、删除和修改菜品 1. 菜品分页查询1.1 需求分析和设计1.1.1 产品原型1.1.2 接口设计 1.2 代码开发1.2.1 设计DTO类1.2.2 设计VO类1.2.3 Controller层1.2.4 Service层接口1.2.5 Service层实现类1.2.6 Mapper层 1.3 功能测试1.3.2 前后端联调测试 2. 删除菜品2.1 需求分析…

使用 HTML、CSS 和 JavaScript 创建图像滑块

使用 HTML、CSS 和 JavaScript 创建轮播图 在本文中,我们将讨论如何使用 HTML、CSS 和 JavaScript 构建轮播图。我们将演示两种不同的创建滑块的方法,一种是基于opacity的滑块,另一种是基于transform的。 创建 HTML 我们首先从 HTML 代码开…

yolo系列中的一些评价指标说明

文章目录 一. 混淆矩阵二. 准确度(Accuracy)三. 精确度(Precision)四. 召回率(Recall)五. F1-score六. P-R曲线七. AP八. mAP九. mAP0.5十. mAP[0.5:0.95] 一. 混淆矩阵 TP (True positives):被正确地划分为正例的个数,即实际为正例且被分类器划分为正例…

Redis-主从与哨兵架构

Jedis使用 Jedis连接代码示例&#xff1a; 1、引入依赖 <dependency><groupId>redis.clients</groupId><artifactId>jedis</artifactId><version>2.9.0</version> </dependency> 2、访问代码 public class JedisSingleTe…

App 设计工具

目录 说明 打开 App 设计工具 示例 创建 App 创建自定义 UI 组件 打开现有 App 文件 打包和共享 App 本文主要讲述以交互方式创建 App。 说明 App 设计工具是一个交互式开发环境&#xff0c;用于设计 App 布局并对其行为进行编程。 可以使用 App 设计工具&#xff1a…

【黑马甄选离线数仓day05_核销主题域开发】

1. 指标分类 ​ 通过沟通调研&#xff0c;把需求进行分析、抽象和总结&#xff0c;整理成指标列表。指标有原子指标、派生指标、 衍生指标三种类型。 ​ 原子指标基于某一业务过程的度量值&#xff0c;是业务定义中不可再拆解的指标&#xff0c;原子指标的核心功能就是对指标…

Python武器库开发-前端篇之CSS元素(三十二)

前端篇之CSS元素(三十二) CSS 元素是一个网页中的 HTML 元素&#xff0c;包括标签、类和 ID。它们可以通过 CSS 选择器选中并设置样式属性&#xff0c;以使网页呈现具有吸引力和良好的可读性。常见的 HTML 元素包括 div、p、h1、h2、span 等&#xff0c;它们可以使用 CSS 设置…