基于 Docker 的深度学习环境:Windows 篇

本篇文章,我们聊聊如何在 Windows 环境下使用 Docker 作为深度学习环境,以及快速运行 SDXL 1.0 正式版,可能是目前网上比较简单的 Docker、WSL2 配置教程啦。

写在前面

早些时候,写过一篇《基于 Docker 的深度学习环境:入门篇》,聊过了在 Linux 环境下,如何简单、正确的配置 GPU Docker 环境。

这几周总有不少好玩的开源模型和相关的应用组团出现,最近几篇文章发布后(尤其是 LLaMA2),总有 Windows 玩家因为环境原因提问。我觉得或许需要写一篇 Windows 下的 Docker 深度学习环境的配置教程,作为查缺补漏参考之用,应该能够减少不少因为环境所带来的问题。

我使用的操作系统版本为 Windows 11 家庭版,如果你使用的操作系统版本低于 Windows 11,可以考虑适当调整命令。

准备 Docker 虚拟化运行环境

想要完成 Docker 虚拟化环境的准备,一共分为三步:安装 Docker、配置 WSL2,开始玩。

安装 Docker 应用程序

我们可以从 Docker 官方网站,获取到 Docker 应用程序安装包的下载。

你看这个按钮,又大又方

下载完毕之后,“一路 Next” 完成安装后,点击安装程序的“重启按钮”等待程序安装完毕。

初步安装完毕,需要重启电脑

等待电脑重启完毕,我们启动 Docker ,可能会遇到报错提示,提醒我们需要 “WSL” 新版本。(如果已经是 WSL2 环境,则可以跳过下面的小节,如果不确定,可以跟着走一遍)

接下来,我们来准备 WSL2 的运行环境。

准备 WSL2 的运行环境

网上的安装教程绝大多数都是陈旧的资料,都比较繁琐,其实配置 WSL2 的环境非常简单。

右键任务栏上的“Windows”徽标,选择“终端管理员”,打开 Powershell 终端界面,执行下面的命令。

wsl --install

命令执行后,可能会得到执行命令超时的提醒。没有关系,再次执行命令即可,等到能够看到终端展示支持的 Linux 操作系统的列表,表示 WSL 初始化正常,网络访问正常:

# wsl --install适用于 Linux 的 Windows 子系统已安装。操作超时

如果遇到超时,没关系的,再试试就好:

# wsl --install适用于 Linux 的 Windows 子系统已安装。以下是可安装的有效分发的列表。
请使用“wsl --install -d <分发>”安装。NAME                                   FRIENDLY NAME
Ubuntu                                 Ubuntu
Debian                                 Debian GNU/Linux
kali-linux                             Kali Linux Rolling
Ubuntu-18.04                           Ubuntu 18.04 LTS
Ubuntu-20.04                           Ubuntu 20.04 LTS
Ubuntu-22.04                           Ubuntu 22.04 LTS
OracleLinux_7_9                        Oracle Linux 7.9
OracleLinux_8_7                        Oracle Linux 8.7
OracleLinux_9_1                        Oracle Linux 9.1
openSUSE-Leap-15.5                     openSUSE Leap 15.5
SUSE-Linux-Enterprise-Server-15-SP4    SUSE Linux Enterprise Server 15 SP4
SUSE-Linux-Enterprise-15-SP5           SUSE Linux Enterprise 15 SP5
openSUSE-Tumbleweed                    openSUSE Tumbleweed

当你看到上面的命令后,我们就可以执行第二条命令 wsl --update 来完成 wsl 主体程序的更新啦:

# wsl --update正在安装: 适用于 Linux 的 Windows 子系统
已安装 适用于 Linux 的 Windows 子系统。

命令执行完毕后,我们能够看到类似上面的提醒。查看程序版本和内核,能够看到类似下面的信息:

# wsl --versionWSL 版本: 1.2.5.0
内核版本: 5.15.90.1
WSLg 版本: 1.0.51
MSRDC 版本: 1.2.3770
Direct3D 版本: 1.608.2-61064218
DXCore 版本: 10.0.25131.1002-220531-1700.rs-onecore-base2-hyp
Windows 版本: 10.0.22621.1778

接着,为了让 Docker 跑的更欢脱,以及能够正常调用 GPU,我们需要切换 WSL 默认版本为 WSL2

# wsl --set-default-version 2有关与 WSL 2 关键区别的信息,请访问 https://aka.ms/wsl2操作成功完成。

上面的操作都完成后,我们再次打开 Docker,就能够看到正常运行的界面啦。

Docker 正常运行

在使用 Docker 调用容器镜像前,我们还需要验证下 Docker 是否能够和 GPU 正常通信。

验证 Docker 中 GPU 是否能够被正常调用

和上篇文章一样,可以先下载一个 Nvidia 官方的 PyTorch 镜像:

docker pull nvcr.io/nvidia/pytorch:23.07-py3

镜像比较大,需要耐心等待几分钟:

# docker pull nvcr.io/nvidia/pytorch:23.07-py323.07-py3: Pulling from nvidia/pytorch
...
...
Digest: sha256:c53e8702a4ccb3f55235226dab29ef5d931a2a6d4d003ab47ca2e7e670f7922b
Status: Downloaded newer image for nvcr.io/nvidia/pytorch:23.07-py3

当镜像下载完毕后,我们可以使用命令 docker run -it --gpus=all --rm nvcr.io/nvidia/pytorch:23.07-py3 nvidia-smi 来使用 Docker 启动一个容器,并在容器中调用 nvidia-smi 显卡管理程序,来查看显卡的状况:

# docker run -it --gpus=all --rm nvcr.io/nvidia/pytorch:23.07-py3 nvidia-smi=============
== PyTorch ==
=============NVIDIA Release 23.07 (build 63867923)
PyTorch Version 2.1.0a0+b5021baContainer image Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.Copyright (c) 2014-2023 Facebook Inc.
Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
Copyright (c) 2012-2014 Deepmind Technologies    (Koray Kavukcuoglu)
Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
Copyright (c) 2011-2013 NYU                      (Clement Farabet)
Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
Copyright (c) 2006      Idiap Research Institute (Samy Bengio)
Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
Copyright (c) 2015      Google Inc.
Copyright (c) 2015      Yangqing Jia
Copyright (c) 2013-2016 The Caffe contributors
All rights reserved.Various files include modifications (c) NVIDIA CORPORATION & AFFILIATES.  All rights reserved.This container image and its contents are governed by the NVIDIA Deep Learning Container License.
By pulling and using the container, you accept the terms and conditions of this license:
https://developer.nvidia.com/ngc/nvidia-deep-learning-container-licenseNOTE: The SHMEM allocation limit is set to the default of 64MB.  This may beinsufficient for PyTorch.  NVIDIA recommends the use of the following flags:docker run --gpus all --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 ...Sat Jul 29 01:44:04 2023
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 530.37                 Driver Version: 531.30       CUDA Version: 12.1     |
|-----------------------------------------+----------------------+----------------------+
| GPU  Name                  Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf            Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                                         |                      |               MIG M. |
|=========================================+======================+======================|
|   0  NVIDIA GeForce RTX 4090         On | 00000000:01:00.0  On |                  Off |
| 32%   38C    P8               23W / 450W|    571MiB / 24564MiB |      4%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------++---------------------------------------------------------------------------------------+
| Processes:                                                                            |
|  GPU   GI   CI        PID   Type   Process name                            GPU Memory |
|        ID   ID                                                             Usage      |
|=======================================================================================|
|  No running processes found                                                           |
+---------------------------------------------------------------------------------------+

通过上面的日志,可以看到显卡状态正常,同时能够读取到所有我们需要的信息。

写到这里,Windows 环境下的 Docker 深度学习环境就聊完了,如果你想了解更多,可以翻阅《基于 Docker 的深度学习环境:入门篇》文章中的“AI 相关的 Docker 镜像,及实际使用”和“其他”小节,来进行查缺补漏。

使用 Docker 在容器中调用 GPU

当然,不实实在在来一场实践,不是我的写作风格。

所以,在环境就绪之后,我们来使用 Docker 来尝试运行上一篇文章《使用 Docker 快速上手 Stability AI 的 SDXL 1.0 正式版》中提到的 Stable Diffusion XL 1.0 的镜像,让它能够在 Windows 环境下正常使用。

这里,我们跳过上一篇的准备工作和镜像构建,直接使用现成的运行环境来折腾 SDXL 1.0。当然,如果你感兴趣,可以翻阅上篇文章全文,来了解背后的技术细节,这里就不展开啦。

下载模型文件和容器环境

我们可以从网盘地址1和网盘地址2,分别下载官方的模型文件和整理好的 Docker 容器环境(环境只下载 sdxl-runtime.tar 即可)。

如果下载出现问题,可以前往 soulteary/docker-sdxl 项目 issue 留言反馈或参考上一篇文章,从 HuggingFace 下载模型,和进行容器镜像的手动构建。

加载模型并准备工作目录

以 C 盘为例,我们在盘根创建一个名为 docker-sdxl 的目录,然后将 sdxl-runtime.tar 和下载模型目录中的 stabilityai 放到这个目录中。

然后,切换工作目录到 C:/docker-sdxl

cd C:/docker-sdxl/

接着,执行命令,载入容器镜像文件 docker load -i .\docker-sdxl\sdxl-runtime.tar

docker load -i .\docker-sdxl\sdxl-runtime.tar
68ad565f4346: Loading layer [==================================================>]   2.56kB/2.56kB
b279d196469f: Loading layer [==================================================>]  384.6MB/384.6MB
08135af11e7a: Loading layer [==================================================>]  1.536kB/1.536kB
6b36eae25335: Loading layer [==================================================>]  6.144kB/6.144kB
72a8d0a30e5a: Loading layer [==================================================>]  18.94kB/18.94kB
Loaded image: soulteary/sdxl:runtime

镜像加载完毕之后,我们就可以运行 Docker 容器,来玩 SDXL 啦:

 docker run --gpus all --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 --rm -it -v C:/docker-sdxl/stabilityai/:/app/stabilityai -p 7860:7860 soulteary/sdxl:runtime

可以看到,命令和前一篇适用于 Linux 环境的文章几乎一致,除了在 Linux 环境下,我们可以通过 pwd 来表示当前目录,而 Windows 环境中,最佳实践是通过完整目录(C:/docker-sdxl/stabilityai/)来表示。

在命令执行完毕后,我们就进入了交互式的终端,接下来我们可以执行和上一篇文章一样的三个程序:basic.pyrefiner.pyrefiner-low-vram.py

# 执行基础模型程序
python basic.py
# 执行全家桶模型程序
python refiner.py
# 执行使用显存稍低的程序
python refiner-low-vram.py

资源要求和消耗和上一篇并没有什么不同,唯一的差别可能是 WSL2 的数据传输性能相比 Linux 环境要低不少,模型加载的时间会长很多,需要耐心等待。

当模型完全加载完毕,我们能够看到下面的日志:

python basic.py
Loading pipeline components...: 100%|███████████████████████████████████████████████████████████████████████████| 7/7 [00:03<00:00,  1.95it/s]
Running on local URL:  http://0.0.0.0:7860/To create a public link, set `share=True` in `launch()`.

接下来,访问 http://localhost:7860 或者 http://你的IP:7860 来访问 SDXL 1.0 的 Web 界面啦。

在 Windows 下的 Docker 中运行 SDXL 1.0

虽然上面日志中加载模型的性能比较差,但实际推理的性能非常好,能够达到 11~13it/s,和 Linux 没有什么差异。(都在显存里了,没有数据交换)

因为 Windows 默认会打开防火墙,限制程序对外暴露端口,避免一些安全问题。在使用的时候,如果你的 Windows 主机和你要访问这个服务的设备是两台设备,你需要关闭或者在防火墙内放行这个应用,有类似情况的小伙伴可以注意下,调整下系统防火墙配置。

其他

我之前已经写过不少 AI 相关的内容,尤其是偏实践类的文章,你可以访问下面几个链接来获取能够快速上手的教程。比如,“Python” 主题的内容、“Llama ” 主题相关的内容、“Stable Diffusion ” 主题相关的内容。

或者,也可以访问我在 GitHub 上公开的项目,获取相关的代码或者 Docker 镜像,自己亲手试验下 “人工智能” 的 iPhone Moment 时代的各种模型。

最后

好了,这篇文章就先写到这里啦,😄

– EOF


我们有一个小小的折腾群,里面聚集了一些喜欢折腾、彼此坦诚相待的小伙伴。

我们在里面会一起聊聊软硬件、HomeLab、编程上的一些问题,也会在群里不定期的分享一些技术资料。

喜欢折腾的小伙伴,欢迎阅读下面的内容,扫码添加好友。

关于“交友”的一些建议和看法

添加好友时,请备注实名和公司或学校、注明来源和目的,珍惜彼此的时间 😄

苏洋:关于折腾群入群的那些事


本文使用「署名 4.0 国际 (CC BY 4.0)」许可协议,欢迎转载、或重新修改使用,但需要注明来源。 署名 4.0 国际 (CC BY 4.0)

本文作者: 苏洋

创建时间: 2023年07月29日
统计字数: 8488字
阅读时间: 17分钟阅读
本文链接: https://soulteary.com/2023/07/29/docker-based-deep-learning-environment-under-windows.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/16715.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Hbase基础概念

HBase 一、HBase的数据模型1.HBase数据存储结构2.HBase存储概念3.HBase基本架构 二、HBase Shell1.DDL(Data Definition Language)1.namespace2.table 2.DML&#xff08;Data Manipulation Language&#xff09;1.写入数据2.读取数据3.删除数据 三、HBase组成架构1. Master架构…

STM32 CubeMX 定时器(普通模式和PWM模式)

STM32 CubeMX STM32 CubeMX 定时器&#xff08;普通模式和PWM模式&#xff09; STM32 CubeMXSTM32 CubeMX 普通模式一、STM32 CubeMX 设置二、代码部分STM32 CubeMX PWM模式一、STM32 CubeMX 设置二、代码部分总结 STM32 CubeMX 普通模式 一、STM32 CubeMX 设置 二、代码部分 …

使用Pytest生成HTML测试报告

背景 最近开发有关业务场景的功能时&#xff0c;涉及的API接口比较多&#xff0c;需要自己模拟多个业务场景的自动化测试&#xff08;暂时不涉及性能测试&#xff09;&#xff0c;并且在每次测试完后能够生成一份测试报告。 考虑到日常使用Python自带的UnitTest&#xff0c;所…

【JVM】详细解析java创建对象的具体流程

目录 一、java创建对象的几种方式 1.1、使用new关键字 1.2、反射创建对象 1.2.1、Class.newInstance创建对象 1.2.2、调用构造器再去创建对象Constructor.newInstance 1.3、clone实现 1.4、反序列化 二、创建对象的过程 2.1、分配空间的方式 1、指针碰撞 2、空闲列表 …

ElementUI 实现动态表单数据校验(已解决)

文章目录 &#x1f34b;前言&#xff1a;&#x1f34d;正文1、探讨需求2、查阅相关文档&#xff08;[element官网](https://element.eleme.cn/#/zh-CN/component/form)&#xff09;官方动态增减表单项示例3、需求完美解决4、注意事项 &#x1f383;专栏分享&#xff1a; &#…

【Linux基础】WSL安装Ubuntu

说明 本文使用的Windows环境是Windows 11 专业版。 WSL现在有二代WSL2&#xff0c;后续都通过WSL2来安装Linux&#xff0c;使用的是Ubuntu发行版&#xff0c;版本是20.04。 安装过程使用了PowerShell&#xff0c;且是管理员权限打开的。 参考适用于 Linux 的 Windows 子系统…

【深度学习】生成对抗网络Generative Adversarial Nets

序言 本文是GAN网络的原始论文&#xff0c;发表于2014年&#xff0c;我们知道&#xff0c;对抗网络是深度学习中&#xff0c;CNN基础上的一大进步&#xff1b; 它最大的好处是&#xff0c;让网络摆脱训练成“死模型”到固定场所处去应用&#xff0c;而是对于变化的场景&#xf…

16位S912ZVML32F3MKH、S912ZVML31F1WKF、S912ZVML31F1MKH混合信号MCU,适用于汽车和工业电机控制应用。

S12 MagniV微控制器是易于使用且高度集成的混合信号MCU&#xff0c;非常适合用于汽车和工业应用。S12 MagniV MCU提供单芯片解决方案&#xff0c;是基于成熟的S12技术的完整系统级封装 (SiP) 解决方案&#xff0c;在整个产品组合内软件和工具都兼容。 S12 MagniV系统级封装 (S…

通过IDEA发送QQ邮箱信息

先创建一个普通的Maven项目&#xff0c;我就不演示啦&#xff0c;个人博客已经写过~[创建一个maven项目]。 项目创建成功后&#xff0c;引人Maven依赖&#xff0c;如下: <dependencies><dependency><groupId>org.apache.commons</groupId><artifact…

在k8s集群内搭建Prometheus监控平台

基本架构 Prometheus由SoundCloud发布&#xff0c;是一套由go语言开发的开源的监控&报警&时间序列数据库的组合。 Prometheus的基本原理是通过HTTP协议周期性抓取被监控组件的状态&#xff0c;任意组件只要提供对应的HTTP接口就可以接入监控。不需要任何SDK或者其他的…

大数据_Hadoop_Parquet数据格式详解

之前有面试官问到了parquet的数据格式&#xff0c;下面对这种格式做一个详细的解读。 参考链接 &#xff1a; 列存储格式Parquet浅析 - 简书 Parquet 文件结构与优势_parquet文件_KK架构的博客-CSDN博客 Parquet文件格式解析_parquet.block.size_davidfantasy的博客-CSDN博…

Redis学习路线(6)—— Redis的分布式锁

一、分布式锁的模型 &#xff08;一&#xff09;悲观锁&#xff1a; 认为线程安全问题一定会发生&#xff0c;因此在操作数据之前先获取锁&#xff0c;确保线程串行执行。例如Synchronized、Lock都属于悲观锁。 优点&#xff1a; 简单粗暴缺点&#xff1a; 性能略低 &#x…

Qt 4. 发布exe

把ex2.exe放在H盘Ex2文件夹下&#xff0c;执行 H:\Ex2>windeployqt ex2.exe H:\Ex2>windeployqt ex2.exe H:\Ex2\ex2.exe 64 bit, release executable Adding Qt5Svg for qsvgicon.dll Skipping plugin qtvirtualkeyboardplugin.dll due to disabled dependencies (Qt5…

go 查询采购单设备事项[小示例]V2-两种模式{严格,包含模式}

第一版&#xff1a; https://mp.csdn.net/mp_blog/creation/editor/131979385 第二版&#xff1a; 优化内容&#xff1a; 检索数据的两种方式&#xff1a; 1.严格模式--找寻名称是一模一样的内容&#xff0c;在上一个版本实现了 2.包含模式&#xff0c;也就是我输入检索关…

舌体分割的初步展示应用——依托Streamlit搭建demo

1 前言 去年在社区发布了有关中医舌象诊断的博文&#xff0c;其中舌象识别板块受到了极高的关注和关注。&#x1f60a;最近&#xff0c;我接触到了Python的Streamlit库&#xff0c;它可以帮助数据相关从业人员轻松搭建数据看板。本文将介绍如何使用Streamlit构建舌体分割的演示…

算法与数据结构-二分查找

文章目录 什么是二分查找二分查找的时间复杂度二分查找的代码实现简单实现&#xff1a;不重复有序数组查找目标值变体实现&#xff1a;查找第一个值等于给定值的元素变体实现&#xff1a;查找最后一个值等于给定值的元素变体实现&#xff1a;查找最后一个小于给定值的元素变体实…

大龄青年的浙大MBA读书梦——提面优秀190+的上岸经验分享

时间如白驹过隙&#xff0c;三十年的岁月也转瞬即逝&#xff0c;回首过往这三十年的人生路&#xff0c;没有大起大落&#xff0c;一直都是相对比较平稳。但这几年疫情原因&#xff0c;公司效益不好&#xff0c;不仅我们公司整个行业也都在裁员&#xff0c;为了让自己更具备竞争…

flask数据库操作

本文将详细介绍在Flask Web应用中如何设计数据库模型,并使用Flask-SQLAlchemy等扩展进行数据库操作的最佳实践。内容涵盖数据模型设计,ORM使用,关系映射,查询方法,事务处理等方面。通过本文,您可以掌握Flask数据库应用的基本知识。 Flask作为一个流行的Python Web框架,提供了高…

什么是架构 架构图

如何画架构图_个人渣记录仅为自己搜索用的博客-CSDN博客 什么是架构&#xff1f;要表达的到底是什么&#xff1f; Linus 03 年在聊到拆分和集成时有一个很好的描述&#xff1a; I claim that you want to start communicating between independent modules no sooner than you…

CAN转ETHERCAT网关将CAN 总线和 ETHERCAT 网络连接方法

由于好多现场会出现将CAN总线的设备接到EtherCAT网络中&#xff0c;由于协议的不相同&#xff0c;不能直接进行连接&#xff0c;现需一种能同时兼容CAN 总线和ETHERCAT网络的一种设备&#xff0c;由此捷米JM-ECT-CAN 是自主研发的一款 ETHERCAT 从站功能的通讯网关。该产品主要…