Redis学习路线(6)—— Redis的分布式锁

一、分布式锁的模型

(一)悲观锁: 认为线程安全问题一定会发生,因此在操作数据之前先获取锁,确保线程串行执行。例如Synchronized、Lock都属于悲观锁。

  • 优点: 简单粗暴
  • 缺点: 性能略低

(二)乐观锁: 认为线程安全问题不一定会发生,因此不加锁,只有在更新数据时判断有没有其他线程对数据做了修改,如果没有修改则认为是安全的,自己才能更新数据;如果已经被其它线程修改,说明发生了安全问题,此时可以重试或异常。

  • 优点: 性能好
  • 缺点: 存在成功率低的问题

(三)常见的实现方式:

  • 版本号法: 通过 id-stock-version结构,通过查询的version与本次是否相同来判断是否被修改。
  • CAS法: 是版本号法的改良版,是用 old-query-new的结构,通过第一次query出来的stock,与第二次提交的stock是否一致,若一致则 old = new;

二、Redis的分布式锁

(一)分布式锁的作用: 作为公用JVM锁监视器,集群中的每台JVM都能获取锁监视器监测的线程,多个JVM内部同步了线程执行。

(二)分布式锁的需求: 多进程可见、互斥、高可用、 高性能、安全性…

(三)常见分布式锁的差异:

MySQLRedisZookeeper
互斥利用mysql本身的互斥锁机制利用setnx这样的互斥命令利用节点的唯一性和有序性实现互斥
高可用
高性能一般一般
安全性断开连接,自动释放锁利用锁超时时间,到期释放临时节点,断开连接自动释放

(四)Redis实现分布式锁

1、获取锁:

  • 互斥: 确保只有一个线程获取锁。SETNX lock thread1

2、释放锁

  • 手动释放: DEL lock
  • 过期释放: EXPIRE lock 5

(1)通过 SET 操作 实现原子性操作: SET lock thread1 EX 10 NX,意思是创建一个lock缓存,值为thread1,保持10s时间,NX为互斥操作

(2)当锁获取失败时的方法:

  • 阻塞式获取锁: 一直等待到有线程释放锁。(对CPU资源消耗高)
  • 非阻塞式获取锁: 失败就不再尝试获取锁。

3、代码实现分布式锁

(1)需求: 定义一个类,实现Redis分布式锁功能。

public class SimpleRedisLock implements ILockService {private static final String LOCK = "lock:";private String threadName;private StringRedisTemplate redisTemplate;public SimpleRedisLock() {}public SimpleRedisLock(String threadName, StringRedisTemplate redisTemplate) {this.threadName = threadName;this.redisTemplate = redisTemplate;}@Overridepublic boolean tryLock(long timeoutSec) {//1、获取锁Boolean absent = redisTemplate.opsForValue().setIfAbsent(LOCK + threadName, String.valueOf(Thread.currentThread().getId()), timeoutSec, TimeUnit.SECONDS);return Boolean.TRUE.equals(absent);}@Overridepublic void unlock() {//2、解锁redisTemplate.delete(LOCK + threadName);}
}

四、基于Redis的分布式锁优化——Redisson对象

(一)基于setnx实现的分布式锁存在的问题

  • 不可重入: 同一个线程无法多次获得同一把锁
  • 不可重试: 获取锁只尝试一次就返回false,没有重试机制
  • 超时释放锁: 锁超时释放,虽然可以避免死锁,但在业务耗时过长,也会导致锁释放,存在安全隐患。
  • 主从一致性: 如果Redis提供了主从集群,主从同步存在延迟,当主宕机时,如果从同步主中的所数据,则会出现锁实现。

(二)实现分布式锁的常用对象——Redisson

1、概念: Redisson是一个Redis的基础上实现的Java驻内存数据网络(In-Memory Data Grid)。提供了一系列分布式的Jav常用对象,还提供了许多分布式服务,其中包含了各种分布式锁的实现。

2、分布式锁的种类 官网地址: https://redisson.org

  • 分布式锁(Lock)和同步器(Synchronizer)
    • 可重入锁(Reentrant Lock)
    • 公平锁(Fair Lock)
    • 联锁(Multi Lock)
    • 红锁(Red Lock)
    • 读写锁(ReadWrite Lock)
    • 信号量(Semaphore)
    • 可过期性信号量(PermitExpirableSemaphore)
    • 闭锁(CountDownLatch)

3、Redisson的基本使用

<dependency><groupId>org.redisson</groupId><artifactId>redisson</artifactId><version>3.13.6</version>
</dependency>
@Configuration
public class RedisConfig {@Beanpublic RedissonClient redissonClient() {//配置类Config config = new Config();//连接redisconfig.useSingleServer().setAddress("redis://192.168.92.131:6379").setPassword("123321");//创建客户端return Redisson.create(config);}
}
@Resource
private RedissonClient redissonClient;@Test
void testRedisson() throws InterruptedException {//	获取锁(可重入),指定锁名称RLock lock = redissonClient.getLock("anyLock");//	尝试获取锁,参数分别是: 获取锁的最大等待时间(期间会重试),锁自动释放时间,时间单位boolean isLock = lock.tryLock(1, 10, TimeUnit.SECONDS);//	判断释放获取成功if(isLock){try{System.out.println("执行业务");}finally{//释放锁lock.unlock();}}
}

4、Redisson可重入锁原理

(1)可重入锁是什么?

可重入锁是指一个线程可以多次获取一把锁的锁获取机制。

(2)ReentrantLock可重入原理

当线程获取锁时,如果有线程占用锁,就检查该线程是否是自己本身,若是自己则再一次尝试获取锁,每执行一次尝试获取锁,就会有个重入计数器记录线程重入的次数,在本次方法执行结束后释放锁,重入计数器相应减一,直到整个方法执行完,才能完整的将锁释放掉。

(3)基于Redis的可重入锁的实现方式

流程: 判断锁是否存在(若不存在,则获取锁并添加线程标识,设置锁有效期,执行业务,执行完毕后依旧需要判断锁的归属以及锁计数状态) 》判断锁标识是否是自己(若是,则锁计数+1) 》 若不是,获取锁失败 》

lua脚本

local key = KEYS[1];
local threadId = ARGV[1];
local releaseTime = ARGV[2];--1、判断当前锁是否是自己
if (redis.call("HEXISTS", key, threadId) == 0) then-- 不是,则直接返回return nil;
end
-- 如果是,则计数器-1
local count = redis.call("HINCRBY", key, threadId, -1);--2、判断统计数是否为0
if (count > 0) then-- 统计数不为零,则重置计时器redis.call("expire", key, releaseTime);
else--统计数为零,则释放锁redis.call("del", key);return nil;
end

5、multiLock,主从一致性

(1)产生原因: 多台Redis,主节点主要存储最新的数据,从节点需要同步数据,在数据同步过程中,会产生延时,因为某些异常导致了主节点宕机了,从节点的数据就不一致并且因为锁对象锁定的redis宕机了,所以锁就失效了,产生了之前所提到的所有分布式安全问题。

(2)解决方法: 联锁机制。

(3)联锁机制的主从一致性的解决方式: 通过获取Redis集群的所有锁,只有获取了Redis集群的所有锁才能进行数据更新。

(4)Redssion的联锁: MultiLock

6、Redisson的锁重试以及WatchDog机制

(1)Redisson的锁重试机制的基本流程: 可自行查看RedissonLock类的重试锁机制和释放锁机制

  • 将等待时间,释放时间,统一转换为毫秒级
  • 第一次尝试获取锁(若返回的TTL为null,说明获取到了)
    • 判断是否获取锁(阻塞等待结果返回)
      • 判断锁释放时间是否为默认(传参了-1,表示默认),若为默认则使用WatchDog监控时间(30s),否则以传入的参数为准
      • 使用异步释放函数,函数里包含了可重入锁实现的脚本(结果返回到一个Future类)
  • 若未获取到锁,则将等待时间减去获取锁的那段时间,并且加以判断等待时间是否不足(若不足,则放弃重试返回错误信息)
  • 订阅当前尝试获取锁的线程标识(阻塞等待剩余等待时间,若还是没有释放锁的信号,则取消订阅并返回错误信息),当释放锁脚本中publish命令执行后,开始进行锁获取
  • 订阅到锁信号
    • 判断等待时间是否充足(等待时间先被减去等待信号的时间,计算结果若小于零,则返回错误信息)
    • 若充足,则循环尝试获取锁,直至锁成功获取,或等待时间不足返回错误(循环尝试并不是一直循环,只有在获取到锁信号的时候才会尝试获取)

在这里插入图片描述


三、分布式锁使用过程中的相关问题

(一)数据超量修改

1、产生原因: 由于多线程的参与,功能模块的方法之间执行顺序就会有差异,那么当多个线程由于操作顺序不同可能都查询到了库存还有剩余,都会去执行扣减库存的操作,这样原本库存数 < 请求线程数,就造成了库存直接变负的情况。

2、解决方案: 加锁,保持用户访问时持有锁才能修改操作。

3、加乐观锁和加悲观锁对问题解决效果

(1)加乐观锁: 由于是通过对更新前后数据变化进行判断是否能够更新数据,同时访问的线程,在线程 a 访问更新后,线程 b 由于更新前后访问的数据不一致,导致线程更新失败,同时在同一时期访问的线程全部失败,所以它的效率会极差,但依旧可以完成业务。

(2)加悲观锁: 由于线程 a 获得了锁,进入了访问更新阶段,但线程 b 并未获取锁而阻塞,若因为没有锁重试机制,可能会导致大量线程失败,相较于乐观锁的方式,成功率显然有所提升,并且其安全性也获得了提升,不会因为同一个用户的多次相同请求而多次更新。

(二)集群状态下,锁功能失效

1、产生原因: JVM内部维护了一个锁监视器,在同一个userid下,认为这个线程是同一个线程,但是当有两个或更多的JVM集群出来,而锁监视器并没有锁定同一个线程,所以才会有并发安全问题。

2、解决方案: 采用分布式锁

(三)业务阻塞导致锁超时释放

1、原因: 线程被阻塞,分布式锁超时被释放,导致线程运行混乱。

2、解决方法: 在业务完成后,先检查锁的标识是否一致,再判断是否释放锁。

(四)超时释放锁

1、产生原因: 由于JVM的垃圾回收机制,线程在释放锁之前可能会遭遇阻塞,造成超时释放锁

2、解决方法: 将判断表示与释放锁形成原子性。

3、实现方法: 使用Lua脚本,编写多条Redis,保证Redis命令的原子性。

3、Lua脚本的使用方法: Redis提供了一个回调函数,可以调用脚本。

EVAL "return redis.call('set', KEYS[1], ARGV[1])" 1 name Rose

4、释放锁的业务流程

  • 获取锁中的线程标识
  • 判断是否与指定标识(当前线程标识)一致
  • 如果一致则释放锁(删除)
  • 如果不一致则什么都不做

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/16694.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qt 4. 发布exe

把ex2.exe放在H盘Ex2文件夹下&#xff0c;执行 H:\Ex2>windeployqt ex2.exe H:\Ex2>windeployqt ex2.exe H:\Ex2\ex2.exe 64 bit, release executable Adding Qt5Svg for qsvgicon.dll Skipping plugin qtvirtualkeyboardplugin.dll due to disabled dependencies (Qt5…

go 查询采购单设备事项[小示例]V2-两种模式{严格,包含模式}

第一版&#xff1a; https://mp.csdn.net/mp_blog/creation/editor/131979385 第二版&#xff1a; 优化内容&#xff1a; 检索数据的两种方式&#xff1a; 1.严格模式--找寻名称是一模一样的内容&#xff0c;在上一个版本实现了 2.包含模式&#xff0c;也就是我输入检索关…

舌体分割的初步展示应用——依托Streamlit搭建demo

1 前言 去年在社区发布了有关中医舌象诊断的博文&#xff0c;其中舌象识别板块受到了极高的关注和关注。&#x1f60a;最近&#xff0c;我接触到了Python的Streamlit库&#xff0c;它可以帮助数据相关从业人员轻松搭建数据看板。本文将介绍如何使用Streamlit构建舌体分割的演示…

算法与数据结构-二分查找

文章目录 什么是二分查找二分查找的时间复杂度二分查找的代码实现简单实现&#xff1a;不重复有序数组查找目标值变体实现&#xff1a;查找第一个值等于给定值的元素变体实现&#xff1a;查找最后一个值等于给定值的元素变体实现&#xff1a;查找最后一个小于给定值的元素变体实…

大龄青年的浙大MBA读书梦——提面优秀190+的上岸经验分享

时间如白驹过隙&#xff0c;三十年的岁月也转瞬即逝&#xff0c;回首过往这三十年的人生路&#xff0c;没有大起大落&#xff0c;一直都是相对比较平稳。但这几年疫情原因&#xff0c;公司效益不好&#xff0c;不仅我们公司整个行业也都在裁员&#xff0c;为了让自己更具备竞争…

flask数据库操作

本文将详细介绍在Flask Web应用中如何设计数据库模型,并使用Flask-SQLAlchemy等扩展进行数据库操作的最佳实践。内容涵盖数据模型设计,ORM使用,关系映射,查询方法,事务处理等方面。通过本文,您可以掌握Flask数据库应用的基本知识。 Flask作为一个流行的Python Web框架,提供了高…

什么是架构 架构图

如何画架构图_个人渣记录仅为自己搜索用的博客-CSDN博客 什么是架构&#xff1f;要表达的到底是什么&#xff1f; Linus 03 年在聊到拆分和集成时有一个很好的描述&#xff1a; I claim that you want to start communicating between independent modules no sooner than you…

CAN转ETHERCAT网关将CAN 总线和 ETHERCAT 网络连接方法

由于好多现场会出现将CAN总线的设备接到EtherCAT网络中&#xff0c;由于协议的不相同&#xff0c;不能直接进行连接&#xff0c;现需一种能同时兼容CAN 总线和ETHERCAT网络的一种设备&#xff0c;由此捷米JM-ECT-CAN 是自主研发的一款 ETHERCAT 从站功能的通讯网关。该产品主要…

Selenium开发环境搭建

1.下载Python https://www.python.org/downloads/ 下载下来选择自己创建的路径进行安装&#xff0c;然后配置环境变量 cmd命令框查看 2.安装selenium cmd命令框输入&#xff1a; pip install selenium3.下载pycharm https://www.jetbrains.com/pycharm/download/#sec…

Helm KinD kubectl krew Istio急速安装

本篇更新网上许多安装失效的工具&#xff0c;如krew和KinD。 本篇测试使用时间为2023/7/20&#xff0c;基本都为最新版本或最新稳定版本。 前置 Helm 是 Kubernetes 的一个包管理工具&#xff0c;用于简化 Kubernetes 应用的部署和管理。Helm 使用名为 "chart" 的打…

搭建测试平台开发(一):Django基本配置与项目创建

一、安装Django最新版本 1 pip install django 二、创建Django项目 首先进入要存放项目的目录&#xff0c;再执行创建项目的命令 1 django-admin startproject testplatform 三、Django项目目录详解 1 testplatform 2 ├── testplatform  # 项目的容器 3 │ ├──…

getInputStream has already been called for this request 问题记录

问题背景 HttpServletRequest.getReader() HttpServletRequest.getInputStream() 不能在过滤器中读取一次二进制流&#xff08;字符流&#xff09;&#xff0c;又在另外一个Servlet中读取一次&#xff0c;即一个InputSteam(BufferedReader)对象在被读取完成后&#xff0c;将无…

JAVA的回调机制、同步/异步调用

一、同步调用 同步调用是最基本的调用方式。类A的a()方法调用类B的b()方法&#xff0c;类A的方法需要等到B类的方法执行完成才会继续执行。如果B的方法长时间阻塞&#xff0c;就会导致A类方法无法正常执行下去。 二、异步调用 如果A调用B&#xff0c;B的执行时间比较长&#…

Linux系统下U盘打不开: No application is registered as handling this file

简述 系统是之前就安装好使用的Ubuntu14.04&#xff0c;不过由于某些原因只安装到了机械硬盘中&#xff1b;最近新买了一块固态硬盘&#xff0c;所以打算把Ubuntu系统迁移到新的固态硬盘上&#xff1b; 当成功的迁移了系统之后发现其引导有点问题&#xff0c;导致多个系统启动不…

区间预测 | MATLAB实现QRBiGRU双向门控循环单元分位数回归多输入单输出区间预测

区间预测 | MATLAB实现QRBiGRU双向门控循环单元分位数回归多输入单输出区间预测 目录 区间预测 | MATLAB实现QRBiGRU双向门控循环单元分位数回归多输入单输出区间预测效果一览基本介绍模型描述程序设计参考资料 效果一览 基本介绍 MATLAB实现QRBiGRU双向门控循环单元分位数回归…

团队任务管理器工具推荐:三款适合协作工作的首选

如果您是项目经理或领导一个小团队&#xff0c;那么每天要完成的任务列表似乎无穷无尽。对于任何规模的公司来说&#xff0c;在不依赖任何软件的情况下掌握任务管理的不同方面都是一项挑战。满足您项目管理需求的正确软件可以显著提高团队的生产力——无论您的团队规模或项目范…

微软亚研院提出模型基础架构RetNet或将成为Transformer有力继承者

作为全新的神经网络架构&#xff0c;RetNet 同时实现了良好的扩展结果、并行训练、低成本部署和高效推理。这些特性将使 RetNet 有可能成为继 Transformer 之后大语言模型基础网络架构的有力继承者。实验数据也显示&#xff0c;在语言建模任务上&#xff1a; RetNet 可以达到与…

使用贝叶斯滤波器通过运动模型和嘈杂的墙壁传感器定位机器人研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

ElasticSearch学习之ElasticSearch快速入门实战

1.先“分词” 2.倒排索引&#xff08;前提是分词&#xff09; ElasticSearch官网地址&#xff1a;欢迎来到 Elastic — Elasticsearch 和 Kibana 的开发者 | Elastichttps://www.elastic.co/cn/ 一、下载 下载地址&#xff1a;https://www.elastic.co/cn/downloads/past-re…

Linux 学习记录59(ARM篇)

Linux 学习记录59(ARM篇) 本文目录 Linux 学习记录59(ARM篇)一、IIC总线1. 概念2. IIC总线硬件连接 二、系统框图三、IIC时序1. 起始信号 / 停止信号2. 数据传输信号3. 应答信号 / 非应答信号4. 寻址信号 四、IIC协议1. 主机给从机发送一个字节(写)2. 主机给从机发送多个连续字…