大数据_Hadoop_Parquet数据格式详解

之前有面试官问到了parquet的数据格式,下面对这种格式做一个详细的解读。

参考链接 :

列存储格式Parquet浅析 - 简书

Parquet 文件结构与优势_parquet文件_KK架构的博客-CSDN博客

Parquet文件格式解析_parquet.block.size_david'fantasy的博客-CSDN博客

Parquet文件组织格式 

行组(Row Group) 

按照行将数据物理上划分为多个单元,每一个行组包含一定的行数。一个行组包含这个行组对应的区间内的所有列的列块。

官方建议:

更大的行组意味着更大的列块,使得能够做更大的序列IO。我们建议设置更大的行组(512MB-1GB)。因为一次可能需要读取整个行组,所以我们想让一个行组刚好在一个HDFS块中。因此,HDFS块的大小也需要被设得更大。一个最优的读设置是:1GB的行组,1GB的HDFS块,1个HDFS块放一个HDFS文件。

列块(Column Chunk)

在一个行组中每一列保存在一个列块中,行组中的所有列连续的存储在这个行组文件中。不同的列块可能使用不同的算法进行压缩。一个列块由多个页组成。

页(Page)

每一个列块划分为多个页,页是压缩和编码的单元,对数据模型来说页是透明的。在同一个列块的不同页可能使用不同的编码方式。官方建议一个页为8KB。

==========================================================

Parquet 文件组织格式图示详解

 图片1

 图片2

通过上面的图片1,我们知道parquet 主要由Header, Data Block, Footer 三个部分构成

Header

每个 Parquet 的首尾各有一个大小为 4 bytes ,内容为 PAR1 的 Magic Number,用来标识这个文件是 Parquet 文件。

Data Block


中间的 Data Block 是具体存放数据的区域,由多个行组(Row Group)组成。
行组 (Row Group),是按照行将数据在物理上分成多个单元,每一个行组包含一定的行数。
比如一个文件有10000条数据,被划分成两个 Row Group,那么每个 Row Group 有 5000 行数据。

在每个行组(Row Group)中,数据按列连续的存储在这个行组文件中,每列的所有数据组合成一个 Column Chunk(列块),一个列块拥有相同的数据类型,不同的列块可以有不同的压缩格式。

在每个列块(Column Chunk)中,数据按 Page 为最小单元来存储,Page 按内容分为 Data page 和 Index Page。(目前Parquet中还不支持索引页,但是在后面的版本中增加。)

这样逐层设计的目的在于:

多个 Row Group 可以实现数据的并行;
不同的 Column Chunk 用来实现列存储;
进一步分割成 Page,可以实现更细粒度的访问;
 

Footer


Footer部分由 File Metadata、**Footer Length **和 **Magic Number **三部分组成。
Footer Length 是一个 4 字节的数据,用于标识 Footer 部分的大小,帮助找到 Footer 的起始指针位置。
Magic Number同样是PAR1。
File Metada包含了非常重要的信息,包括Schema和每个 Row Group 的 Metadata。
每个 Row Group 的 Metadata 又由各个 Column 的 Metadata 组成,每个 Column Metadata 包含了其Encoding、Offset、Statistic 信息等等。
 

Parquet 文件的优势

(1) 映射下推(Project PushDown)/ 列裁剪(offset of first data page -> 列的起始结束位置)

说到列式存储的优势,映射下推是最突出的,它意味着在获取表中原始数据时只需要扫描查询中需要的列,由于每一列的所有值都是连续存储的,所以分区取出每一列的所有值就可以实现TableScan算子,而避免扫描整个表文件内容。

在Parquet中原生就支持映射下推,执行查询的时候可以通过Configuration传递需要读取的列的信息,这些列必须是Schema的子集,映射每次会扫描一个Row Group的数据,然后一次性得将该Row Group里所有需要的列的Cloumn Chunk都读取到内存中,每次读取一个Row Group的数据能够大大降低随机读的次数,除此之外,Parquet在读取的时候会考虑列是否连续,如果某些需要的列是存储位置是连续的,那么一次读操作就可以把多个列的数据读取到内存。

Parquet 列式存储方式可以方便地在读取数据到内存之间找到真正需要的列,具体是:
并行的 task 对应一个Parquet的行组(row group),每一个task内部有多个列块,列快连续存储,同一列的数据存储在一起,任务中先去访问 footer 的 File metadata,其中包括每个行组的 metadata,里面的 Column Metadata 记录 offset of first data page 和 offset of first index page,这个记录了每个不同列的起始位置,这样就找到了需要的列的开始和结束位置。

其中 data 和 index 是对数值和字符串数据的处理方式,对于字符变量会存储为key/value对的字典转化为数值

(2)谓词下推(Column Statistic -> 列的range和枚举值信息)
谓词下推的基本思想:

尽可能用过滤表达式提前过滤数据,以使真正执行时能直接跳过无关的数据。

比如这个 SQL:

select item.name, order.* from order , item where order.item_id = item.id and item.category = 'book';


使用谓词下推,会将表达式 item.category = ‘book’ 下推到 join 条件 order.item_id = item.id 之前。
再往高大上的方面说,就是将过滤表达式下推到存储层直接过滤数据,减少传输到计算层的数据量。

Parquet 中 File metadata 记录了每一个 Row group 的 Column statistic,包括数值列的 max/min,字符串列的枚举值信息,比如如果 SQL 语句中对一个数字列过滤 >21 以上的,因此 File 0 的行组 1 和 File 1 的行组 0 不需要读取

另外Parquet未来还会增加诸如Bloom Filter和Index等优化数据,更加有效的完成谓词下推。

(3)压缩效率高,占用空间少,存储成本低

Parquet 这类列式存储有着更高的压缩比,相同类型的数据为一列存储在一起方便压缩,不同列可以采用不同的压缩方式,结合Parquet 的嵌套数据类型,可以通过高效的编码和压缩方式降低存储空间提高 IO 效率

===============

HDFS 上的Parquet 性能调优

如果采用HDFS文件系统,影响Parquet文件读写性能的参数主要有两个,dfs.blocksize和parquet.block.size

  • dfs.blocksize

    控制HDFS file中每个block的大小,该参数主要影响计算任务的并行度,例如在spark中,一个map操作的默认分区数=(输入文件的大小/dfs.block.size)*输入的文件数(分区数等于该操作产生的任务数),如果dfs.block.size设置过大或过小,都会导致
生成的Task数量不合理,因此应根据实际计算所涉及的输入文件大小以及executor数量决定何时的值。

  • parquet.block.size

    控制parquet的Row Group大小,一般情况下较大的值可以组织更大的连续存储的Column Chunk,有利于提升I/O性能,但上面也提到Row group是数据读写时候的缓存单元,每个需要读写的parquet文件都需要在内存中占据Row Group size设置的内存空间(读取的情况,由于可能跳过部分列,占据的内存会小于Row Group size),这样更大的Row Group size意味着更多的内存开销。同时设置该值时还需要考虑dfs.blocksize的值,尽量让Row Group size等同于HDFS一个block的大小,因为单个Row Group必须在一个计算任务中被处理,如果一个Row Group跨越了多个hdfs block可能会导致额外的远程数据读取。一般推荐的参数一个Row group大小1G,一个HDFS块大小1G,一个HDFS文件只含有一个块。
 

在Spark中可以使用如下方式修改默认配置参数:

val ONE_GB = 1024 * 1024 * 1024sc.hadoopConfiguration.setInt("dfs.blocksize", ONE_GB)sc.hadoopConfiguration.setInt("parquet.block.size", ONE_GB)

Parquet 性能测试

压缩

上图是展示了使用不同格式存储TPC-H和TPC-DS数据集中两个表数据的文件大小对比,可以看出Parquet较之于其他的二进制文件存储格式能够更有效的利用存储空间,而新版本的Parquet(2.0版本)使用了更加高效的页存储方式,进一步的提升存储空间。

查询

 上图展示了Twitter在Impala中使用不同格式文件执行TPC-DS基准测试的结果,测试结果可以看出Parquet较之于其他的行式存储格式有较明显的性能提升。

上图展示了criteo公司在Hive中使用ORC和Parquet两种列式存储格式执行TPC-DS基准测试的结果,测试结果可以看出在数据存储方面,两种存储格式在都是用snappy压缩的情况下量中存储格式占用的空间相差并不大,查询的结果显示Parquet格式稍好于ORC格式,两者在功能上也都有优缺点,Parquet原生支持嵌套式数据结构,而ORC对此支持的较差,这种复杂的Schema查询也相对较差;而Parquet不支持数据的修改和ACID,但是ORC对此提供支持,但是在OLAP环境下很少会对单条数据修改,更多的则是批量导入。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/16695.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Redis学习路线(6)—— Redis的分布式锁

一、分布式锁的模型 (一)悲观锁: 认为线程安全问题一定会发生,因此在操作数据之前先获取锁,确保线程串行执行。例如Synchronized、Lock都属于悲观锁。 优点: 简单粗暴缺点: 性能略低 &#x…

Qt 4. 发布exe

把ex2.exe放在H盘Ex2文件夹下,执行 H:\Ex2>windeployqt ex2.exe H:\Ex2>windeployqt ex2.exe H:\Ex2\ex2.exe 64 bit, release executable Adding Qt5Svg for qsvgicon.dll Skipping plugin qtvirtualkeyboardplugin.dll due to disabled dependencies (Qt5…

go 查询采购单设备事项[小示例]V2-两种模式{严格,包含模式}

第一版: https://mp.csdn.net/mp_blog/creation/editor/131979385 第二版: 优化内容: 检索数据的两种方式: 1.严格模式--找寻名称是一模一样的内容,在上一个版本实现了 2.包含模式,也就是我输入检索关…

舌体分割的初步展示应用——依托Streamlit搭建demo

1 前言 去年在社区发布了有关中医舌象诊断的博文,其中舌象识别板块受到了极高的关注和关注。😊最近,我接触到了Python的Streamlit库,它可以帮助数据相关从业人员轻松搭建数据看板。本文将介绍如何使用Streamlit构建舌体分割的演示…

算法与数据结构-二分查找

文章目录 什么是二分查找二分查找的时间复杂度二分查找的代码实现简单实现:不重复有序数组查找目标值变体实现:查找第一个值等于给定值的元素变体实现:查找最后一个值等于给定值的元素变体实现:查找最后一个小于给定值的元素变体实…

大龄青年的浙大MBA读书梦——提面优秀190+的上岸经验分享

时间如白驹过隙,三十年的岁月也转瞬即逝,回首过往这三十年的人生路,没有大起大落,一直都是相对比较平稳。但这几年疫情原因,公司效益不好,不仅我们公司整个行业也都在裁员,为了让自己更具备竞争…

flask数据库操作

本文将详细介绍在Flask Web应用中如何设计数据库模型,并使用Flask-SQLAlchemy等扩展进行数据库操作的最佳实践。内容涵盖数据模型设计,ORM使用,关系映射,查询方法,事务处理等方面。通过本文,您可以掌握Flask数据库应用的基本知识。 Flask作为一个流行的Python Web框架,提供了高…

什么是架构 架构图

如何画架构图_个人渣记录仅为自己搜索用的博客-CSDN博客 什么是架构?要表达的到底是什么? Linus 03 年在聊到拆分和集成时有一个很好的描述: I claim that you want to start communicating between independent modules no sooner than you…

CAN转ETHERCAT网关将CAN 总线和 ETHERCAT 网络连接方法

由于好多现场会出现将CAN总线的设备接到EtherCAT网络中,由于协议的不相同,不能直接进行连接,现需一种能同时兼容CAN 总线和ETHERCAT网络的一种设备,由此捷米JM-ECT-CAN 是自主研发的一款 ETHERCAT 从站功能的通讯网关。该产品主要…

Selenium开发环境搭建

1.下载Python https://www.python.org/downloads/ 下载下来选择自己创建的路径进行安装,然后配置环境变量 cmd命令框查看 2.安装selenium cmd命令框输入: pip install selenium3.下载pycharm https://www.jetbrains.com/pycharm/download/#sec…

Helm KinD kubectl krew Istio急速安装

本篇更新网上许多安装失效的工具,如krew和KinD。 本篇测试使用时间为2023/7/20,基本都为最新版本或最新稳定版本。 前置 Helm 是 Kubernetes 的一个包管理工具,用于简化 Kubernetes 应用的部署和管理。Helm 使用名为 "chart" 的打…

搭建测试平台开发(一):Django基本配置与项目创建

一、安装Django最新版本 1 pip install django 二、创建Django项目 首先进入要存放项目的目录,再执行创建项目的命令 1 django-admin startproject testplatform 三、Django项目目录详解 1 testplatform 2 ├── testplatform  # 项目的容器 3 │ ├──…

getInputStream has already been called for this request 问题记录

问题背景 HttpServletRequest.getReader() HttpServletRequest.getInputStream() 不能在过滤器中读取一次二进制流(字符流),又在另外一个Servlet中读取一次,即一个InputSteam(BufferedReader)对象在被读取完成后,将无…

JAVA的回调机制、同步/异步调用

一、同步调用 同步调用是最基本的调用方式。类A的a()方法调用类B的b()方法,类A的方法需要等到B类的方法执行完成才会继续执行。如果B的方法长时间阻塞,就会导致A类方法无法正常执行下去。 二、异步调用 如果A调用B,B的执行时间比较长&#…

Linux系统下U盘打不开: No application is registered as handling this file

简述 系统是之前就安装好使用的Ubuntu14.04,不过由于某些原因只安装到了机械硬盘中;最近新买了一块固态硬盘,所以打算把Ubuntu系统迁移到新的固态硬盘上; 当成功的迁移了系统之后发现其引导有点问题,导致多个系统启动不…

区间预测 | MATLAB实现QRBiGRU双向门控循环单元分位数回归多输入单输出区间预测

区间预测 | MATLAB实现QRBiGRU双向门控循环单元分位数回归多输入单输出区间预测 目录 区间预测 | MATLAB实现QRBiGRU双向门控循环单元分位数回归多输入单输出区间预测效果一览基本介绍模型描述程序设计参考资料 效果一览 基本介绍 MATLAB实现QRBiGRU双向门控循环单元分位数回归…

团队任务管理器工具推荐:三款适合协作工作的首选

如果您是项目经理或领导一个小团队,那么每天要完成的任务列表似乎无穷无尽。对于任何规模的公司来说,在不依赖任何软件的情况下掌握任务管理的不同方面都是一项挑战。满足您项目管理需求的正确软件可以显著提高团队的生产力——无论您的团队规模或项目范…

微软亚研院提出模型基础架构RetNet或将成为Transformer有力继承者

作为全新的神经网络架构,RetNet 同时实现了良好的扩展结果、并行训练、低成本部署和高效推理。这些特性将使 RetNet 有可能成为继 Transformer 之后大语言模型基础网络架构的有力继承者。实验数据也显示,在语言建模任务上: RetNet 可以达到与…

使用贝叶斯滤波器通过运动模型和嘈杂的墙壁传感器定位机器人研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

ElasticSearch学习之ElasticSearch快速入门实战

1.先“分词” 2.倒排索引(前提是分词) ElasticSearch官网地址:欢迎来到 Elastic — Elasticsearch 和 Kibana 的开发者 | Elastichttps://www.elastic.co/cn/ 一、下载 下载地址:https://www.elastic.co/cn/downloads/past-re…