1. 简介
牛顿迭代法是求近似根的一种方法。
以求平方根为例。
如 x 2 = m x^2=m x2=m
令 f ( x ) = x 2 − m f(x)=x^2-m f(x)=x2−m
则 f ′ ( x ) = 2 x f'(x)=2x f′(x)=2x
函数 f ( x ) f(x) f(x)在 x 0 x_0 x0处的切线方程为
g ( x ) = f ′ ( x 0 ) ( x − x 0 ) + f ( x 0 ) g(x) = f'(x_0)(x - x_0) + f(x_0) g(x)=f′(x0)(x−x0)+f(x0)
令该切线与x轴交点为 ( x 1 , 0 ) (x_1,0) (x1,0)
x 1 = x 0 − f ( x 0 ) f ′ ( x 0 ) x_1=x_0 - \frac {f(x_0)} {f'(x_0)} x1=x0−f′(x0)f(x0)
x 1 = x 0 − x 0 2 − m 2 x 0 x_1= x_0- \frac {x_0^2-m}{2x_0} x1=x0−2x0x02−m
重复上述迭代过程,直到 x n + 1 − x n x_{n+1}-x_n xn+1−xn小于某一精度
2. 实现
迭代即可
- cpp
#include <iostream>
#include <cstring>
#include <cmath>double my_sqrt(double x)
{double x0 = 1;double x1 = x0 - (x0 * x0 - x)/(2*x0);while ( std::abs(x0-x1) > 1e-6) {x0 = x1;x1 -= (x1*x1 - x) / (2*x1);}return x0;
}int main(int argc, char *argv[])
{std::cout << my_sqrt(2) << std::endl;std::cout << my_sqrt(3) << std::endl;std::cout << my_sqrt(5) << std::endl;return 0;
}
- go
package mainimport ("fmt""math"
)func New_ton(x ,z float64) float64{return z - (z*z - x) / (2 * z)
}func Sqrt(x float64) float64 {z := 1.0for z0:= New_ton(x, z); math.Abs(z-z0) > 1e-6; z0 = New_ton(x,z0) {z = z0}return z
}func main() {fmt.Println(Sqrt(2))fmt.Println(Sqrt(3))fmt.Println(Sqrt(5))
}
3. Ref
go_tutorial