JVM-虚拟机的故障处理与调优案例分析

案例1:大内存硬件上的程序部署策略

一个15万PV/日左右的在线文档类型网站最近更换了硬件系统,服务器的硬件为四路志强处理器、16GB物理内存,操作系统为64位CentOS 5.4,Resin作为Web服务器。整个服务器暂时没有部署别的应用,所有硬件资源都可以提供给这访问量并不算太大的文档网站使用。软件版本选用的是64位的JDK 5,管理员启用了一个虚拟机实例,使用-Xmx和-Xms参数将Java大小固定在12GB
监控服务器运行状况后发现网站失去响应是由垃圾收集停顿所导致的,在该系统软硬件条件下,HotSpot虚拟机是以服务端模式运行,默认使用的是吞吐量优先收集器,回收12GB的Java堆,一次FullGC的停顿时间就高达14秒。由于程序设计的原因,访问文档时会把文档从磁盘提取到内存中,导致内存中出现很多由文档序列化产生的大对象,这些大对象大多在分配时就直接进入了老年代没有在Minor GC中被清理掉。这种情况下即使有12GB的堆,内存也很快会被消耗殆尽。
主要问题:过大的堆内存进行回收时带来的长时间的停顿
单体应用在较大内存的硬件上主要的
部署方式
有两种:
1)通过一个单独的Java虚拟机实例来管理大量的Java堆内存。
使用单个Java虚拟机实例来管理大内存,还需要考虑下面可能面临的问题:
Ⅰ回收大块堆内存而导致的长时间停顿,自从G1收集器的出现,增量回收得到比较好的应用
Ⅱ大内存必须有64位Java虚拟机的支持,但由于压缩指针、处理器缓存行容量(Cache Line)等因
素,64位虚拟机的性能测试结果普遍略低于相同版本的32位虚拟机。
Ⅲ必须保证应用程序足够稳定,因为这种大型单体应用要是发生了堆内存溢出,几乎无法产生堆转
储快照
(要产生十几GB乃至更大的快照文件),哪怕成功生成了快照也难以进行分析;如果确实出了
问题要进行诊断,可能就必须应用JMC这种能够在生产环境中进行的运维工具
2)同时使用若干个Java虚拟机,建立逻辑集群来利用硬件资源。
做法是在一台物理机器上启动多个应用服务器进程,为每个服务器进程分配不同端口,然后在前端搭建一个负载均衡器,以反向代理的方式来分配访问请求。
缺点:
Ⅰ节点竞争全局的资源,最典型的就是磁盘竞争,各个节点如果同时访问某个磁盘文件的话(尤其是并发写操作容易出现问题),很容易导致I/O异常。
Ⅱ很难最高效率地利用某些资源池,譬如连接池,一般都是在各个节点建立自己独立的连接池,这样有可能导致一些节点的连接池已经满了,而另外一些节点仍有较多空余。尽管可以使用集中式的JNDI来解决,但这个方案有一定复杂性并且可能带来额外的性能代价。
解决方案:
调整为建立5个32位JDK的逻辑集群,每个进程按2GB内存计算(其中堆固定为1.5GB),占用了10GB内存。另外建立一个Apache服务作为前端均衡代理作为访问门户。考虑到用户对响应速度比较关心,并且文档服务的主要压力集中在磁盘和内存访问,处理器资源敏感度较低,因此改为CMS收集器进行垃圾回收。

案例2:集群间同步导致的内存溢出

一个基于B/S的MIS系统,硬件为两台双路处理器、8GB内存的HP小型机,应用中间件是WebLogic9.2,每台机器启动了3个WebLogic实例,构成一个6个节点的亲合式集群。由于是亲合式集群,节点之间没有进行Session同步,但是有一些需求要实现部分数据在各个节点间共享。最开始这些数据是存放在数据库中的,但由于读写频繁、竞争很激烈,性能影响较大,后面使用JBossCache构建了一个全局缓存。全局缓存启用后,服务正常使用了一段较长的时间。但在最近不定期出现多次的内存溢出问题。
最近一次溢出之后,堆转储快照里面存在着大量的org.jgroups.protocols.pbcast.NAKACK对象
JBossCache是基于自家的JGroups进行集群间的数据通信,JGroups使用协议栈的方式来实现收发数据包的各种所需特性自由组合,数据包接收和发送时要经过每层协议栈的up()和down()方法,其中的NAKACK栈用于保障各个包的有效顺序以及重发。
由于信息有传输失败需要重发的可能性,在确认所有注册在GMS(Group Membership Service)的节点都收到正确的信息前,发送的信息必须在内存中保留。当网络情况不能满足传输要求时,重发数据在内存中不断堆积,很快就产生了内存溢出。

案例3:堆外内存导致的溢出错误

基于B/S的电子考试系统,为了实现客户端能实时地从服务器端接收考试数据,系统使用了逆向AJAX技术(也称为Comet或者Server Side Push),选用CometD 1.1.1作为服务端推送框架,服务器是Jetty 7.1.4,硬件为一台很普通PC机,Core i5 CPU,4GB内存,运行32位Windows操作系统。
问题:服务端不定时抛出内存溢出异常,加入-XX:+HeapDumpOnOutOfMemoryError参数,居然也没有任何反应,抛出内存溢出异常时什么文件都没有产生。无奈之下只好挂着jstat紧盯屏幕,发现垃圾收集并不频繁,Eden区、Survivor区、老年代以及方法区的内存全部都很稳定,压力并不大,但就是照样不停抛出内存溢出异常。在内存溢出后从系统日志中找到异常堆栈
在这里插入图片描述
问题出在直接内存,虚拟机虽然会对直接内存进行回收,但是直接内存却不能像新生代、老年代那样,发现空间不足了就主动通知收集器进行垃圾回收,它只能等待老年代满后Full GC出现后,“顺便”帮它清理掉内存的废弃对
象。否则就不得不一直等到抛出内存溢出异常时,先捕获到异常
从实践经验的角度出发,在
处理小内存或者32位的应用问题
时,除了Java堆和方法区之外,我们注意到下面这些区域还会占用较多的内存,这里所有的内存总和受到操作系统进程最大内存的限制:
直接内存:可通过-XX:MaxDirectMemorySize调整大小,内存不足时抛出OutOf-MemoryError或
者OutOfMemoryError:Direct buffer memory。
线程堆栈:可通过-Xss调整大小,内存不足时抛出StackOverflowError(如果线程请求的栈深度大于虚拟机所允许的深度)或者OutOfMemoryError(如果Java虚拟机栈容量可以动态扩展,当栈扩展时无法申请到足够的内存)。
Socket缓存区:每个Socket连接都Receive和Send两个缓存区,分别占大约37KB和25KB内存,连接多的话这块内存占用也比较可观。如果无法分配,可能会抛出IOException:Too many open files异常。
JNI代码:如果代码中使用了JNI调用本地库,那本地库使用的内存也不在堆中,而是占用Java虚拟机的本地方法栈和本地内存的。

案例4:外部命令导致系统缓慢

一个数字校园应用系统,运行在一台四路处理器的Solaris 10操作系统上,中间件为GlassFish服务器。系统在做大并发压力测试的时候,发现请求响应时间比较慢,通过操作系统的mpstat工具发现处理器使用率很高,但是系统中占用绝大多数处理器资源的程序并不是该应用本身。
**原因:发现最消耗处理器资源的竟然是“fork”**系统调用。众所周知,“fork”系统调用是Linux用来产生新进程的,在Java虚拟机中,用户编写的Java代码通常最多只会创建新的线程,不应当有进程的产生,这又是个相当不正常的现象。
每个用户请求的处理都需要执行一个外部Shell脚本来获得系统的一些信息。**执行这个Shell脚本是通过Java的Runtime.getRuntime().exec()**方法来调用的。这种调用方式可以达到执行Shell脚本的目的,但是它在Java虚拟机中是非常消耗资源的操作,即使外部命令本身能很快执行完毕,频繁调用时创建进程的开销也会非常可观。Java虚拟机执行这个命令的过程是首先复制一个和当前虚拟机拥有一样环境变量的进程,再用这个新的进程去执行外部命令,最后再退出这个进程。如果频繁执行这个操作,系统的消耗必然会很大,而且不仅是处理器消耗,内存负担也很重。
**解决办法:**去掉这个Shell脚本执行的语句

案例5:服务器虚拟机进程崩溃

一个基于B/S的MIS系统,硬件为两台双路处理器、8GB内存的HP系统,服务器是WebLogic9.2(与第二个案例中那套是同一个系统)。正常运行一段时间后,最近发现在运行期间频繁出现集群节点的虚拟机进程自动关闭的现象,留下了一个hs_err_pid###.log文件后,虚拟机进程就消失了,两台物理机器里的每个节点都出现过进程崩溃的现象。从系统日志中注意到,每个节点的虚拟机进程在崩溃之前,都发生过大量相同的异常
在这里插入图片描述
这是一个远端断开连接的异常,通过系统管理员了解到系统最近与一个OA门户做了集成,在MIS系统工作流的待办事项变化时,要通过Web服务通知OA门户系统,把待办事项的变化同步到OA门户之中。通过SoapUI测试了一下同步待办事项的几个Web服务,发现调用后竟然需要长达3分钟才能返回,并且返回结果都是超时导致的连接中断。
由于MIS系统的用户多,待办事项变化很快,为了不被OA系统速度拖累,使用了异步的方式调用Web服务,但由于两边服务速度的完全不对等,时间越长就累积了越多Web服务没有调用完成,导致在等待的线程和Socket连接越来越多,最终超过虚拟机的承受能力后导致虚拟机进程崩溃。通知OA门户方修复无法使用的集成接口,并将异步调用改为生产者/消费者模式的消息队列实现后,系统恢复正常

案例6:不恰当数据结构导致内存占用过大

一个后台RPC服务器,使用64位Java虚拟机,内存配置为-Xms4g-Xmx8g-Xmn1g,使用ParNew加CMS的收集器组合。平时对外服务的Minor GC时间约在30毫秒以内,完全可以接受。但业务上需要每10分钟加载一个约80MB的数据文件到内存进行数据分析,这些数据会在内存中形成超过100万个HashMap<Long,Long>Entry,在这段时间里面Minor GC就会造成超过500毫秒的停顿
产生问题的根本原因是用HashMap<Long,Long>结构来存储数据文件空间效率太低了
我们具体分析一下HashMap空间效率,在HashMap<Long,Long>结构中,只有Key和Value所存放的两个长整型数据是有效数据,共16字节(2×8字节)。这两个长整型数据包装成java.lang.Long对象之后,就分别具有8字节的Mark Word、8字节的Klass指针,再加8字节存储数据的long值。然后这2个Long对象组成Map.Entry之后,又多了16字节的对象头,然后一个8字节的next字段和4字节的int型的hash字段,为了对齐,还必须添加4字节的空白填充,最后还有HashMap中对这个Entry的8字节的引用,这样增加两个长整型数字,实际耗费的内存为(Long(24byte)×2)+Entry(32byte)+HashMapRef(8byte)=88byte,空间效率为有效数据除以全部内存空间,即16字节/88字节=18%,这确实太低了

案例7:由Windows虚拟内存导致的长时间停顿

有一个带心跳检测功能的GUI桌面程序,每15秒会发送一次心跳检测信号,如果对方30秒以内都没有信号返回,那就认为和对方程序的连接已经断开。
问题:
程序上线后发现心跳检测有误报的可能,查询日志发现误报的原因是程序会偶尔出现间隔约一分钟的时间完全无日志输出,处于停顿状态
出现原因:当它最小化的时候,资源管理中显示的占用内存大幅度减小,但是虚拟内存则没有变化,因此怀疑程序在最小化时它的工作内存被自动交换到磁盘的页面文件之中了,这样发生垃圾收集时就有可能因为恢复页面文件的操作导致不正常的垃圾收集停顿。
**解决方法:**可以加入参数“-Dsun.awt.keepWorkingSetOnMinimize=true”来解决。这个参数在许多AWT的程序上都有应用,例如JDK(曾经)自带的VisualVM,启动配置文件中就有这个参数,保证程序在恢复最小化时能够立即响应。在这个案例中加入该参数,问题马上得到解决。

案例8:由安全点导致长时间停顿

有一个比较大的承担公共计算任务的离线HBase集群,运行在JDK 8上,使用G1收集器。每天都有大量的MapReduce或Spark离线分析任务对其进行访问,同时有很多其他在线集群Replication过来的数据写入,因为集群读写压力较大,而离线分析任务对延迟又不会特别敏感,所以将-XX:MaxGCPauseMillis参数设置到了500毫秒。不过运行一段时间后发现垃圾收集的停顿经常达到3秒以上,而且实际垃圾收集器进行回收的动作就只占其中的几百毫秒
user:进程执行用户态代码所耗费的处理器时间。
·sys:进程执行核心态代码所耗费的处理器时间。
·real:执行动作从开始到结束耗费的时钟时间。
请注意,前面两个是处理器时间,而最后一个是时钟时间,它们的区别是处理器时间代表的是线程占用处理器一个核心的耗时计数,而时钟时间就是现实世界中的时间计数。如果是单核单线程的场景下,这两者可以认为是等价的,但如果是多核环境下,同一个时钟时间内有多少处理器核心正在工作,就会有多少倍的处理器时间被消耗和记录下来
问题:日志中的2255毫秒自旋(Spin)时间就是指由于部分线程已经走到了安全点,但还有一些特别慢的线程并没有到,所以垃圾收集线程无法开始工作,只能空转(自旋)等待
**原因及解决方法:**最终查明导致这个问题是HBase中一个连接超时清理的函数,由于集群会有多个MapReduce或Spark任务进行访问,而每个任务又会同时起多个Mapper/Reducer/Executer,其每一个都会作为一个HBase的客户端,这就导致了同时连接的数量会非常多。更为关键的是,清理连接的索引值就是int类型,所以这是一个可数循环,HotSpot不会在循环中插入安全点。当垃圾收集发生时,如果RpcServer的Listener线程刚好执行到该函数里的可数循环时,则必须等待循环全部跑完才能进入安全点,此时其他线程也必须一起等着,所以从现象上看就是长时间的停顿。找到了问题,解决起来就非常简单了,把循环索引的数据类型从int改为long即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/137319.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

通过 dump 虚拟机线程方法栈和堆内存来分析 Android 卡顿和 OOM 问题

作者&#xff1a;Tans5 Android 中的性能问题无非就是卡顿和 OOM&#xff0c;虽然总体就这两种&#xff0c;但是造成这两种性能问题的原因却是非常多&#xff0c;需要具体的原因具体分析&#xff0c;而且这是非常复杂的。本篇文章只是简单介绍如何找到造成这些问题的直接原因的…

Nodejs的安装以及配置(node-v12.16.1-x64.msi)

Nodejs的安装以及配置 1、安装 node-v12.16.1-x64.msi点击安装&#xff0c;注意以下步骤 本文设置nodejs的安装的路径&#xff1a;D:\soft\nodejs 继续点击next&#xff0c;选中Add to PATH &#xff0c;旁边的英文告诉我们会把 环境变量 给我们配置好 当然也可以只选择 Nod…

Oracle获取执行计划的6种方法

一、什么是执行计划&#xff1f; 执行计划是一条查询语句在Oracle中的执行过程或访问路径的描述。 执行计划描述了SQL引擎为执行SQL语句进行的操作&#xff0c;分析SQL语句相关的性能问题或仅仅质疑查询优化器的决定时&#xff0c;必须知道执行计划&#xff1b;所以执行计划常用…

【使用教程】在Ubuntu下PMM60系列一体化伺服电机通过PDO跑循环同步位置模式详解

本教程将指导您在Ubuntu操作系统下使用PDO来配置和控制PMM60系列一体化伺服电机以实现循环同步位置模式。我们将介绍必要的步骤和命令&#xff0c;以确保您能够成功地配置和控制PMM系列一体化伺服电机。 一、准备工作 在正式介绍之前还需要一些准备工作&#xff1a;1.装有lin…

点亮一个灯

.text .global _start _start: RCC时钟使能 GPIOE RCC_MP_AHB$ENSETR[4]->1 LDR R0,0x50000a28 LDR R1,[R0] ORR R1,R1,#(0x1<<4) ORR R1,R1,#(0x1<<5) STR R1,[R0]设置PE10为输出模式 GPIOE_MODER[21:20]->01 先清0 LDR R0,0x50006000 LDR R1,[R0] BI…

Spark 读取ES采坑系列

目录 一、使用的插件 二、ES集群和Elasticsearch-hadoop版本问题 三、Elasticsearch-hadoop 和Scala版本以及Spark版本&#xff08;版本不匹配会有各种异常信息 一、使用的插件 <dependency><groupId>org.elasticsearch</groupId><artifactId>elas…

centos配置docker环境

CentOS系统更换软件安装源 yum默认链接的还是国外的镜像&#xff0c;速度相对不理想&#xff0c;配置成国内的镜像会快很多,这里以阿里镜像为例进行配置&#xff1a; 首先进行更新&#xff1a; yum updatebase源 第一步&#xff1a;备份你的原镜像文件&#xff0c;以免出错后…

为什么说软文推广中了解用户是关键?

数字化时代下软文成为众多企业推广品牌的方式之一&#xff0c;所谓软文&#xff0c;就是指以向用户提供信息&#xff0c;并将产品隐含在信息中的柔性手段。 想要使软文效果明显&#xff0c;就必须深入了解用户&#xff0c;把握其需求、兴趣和行为特点&#xff0c;这也是今天媒…

一篇文章教会你写一个贪吃蛇小游戏(纯C语言)

一篇文章教会你写一个贪吃蛇小游戏 1、游戏展示2、游戏功能3、Win32 API3.1 控制台程序3.2 控制台屏幕上的坐标COORD3.3 GetStdHandle函数3.4 GetConsoleCursorInfo函数3.4.1 CONSOLE_CURSOR_INFO结构体 3.5 SetConsoleCursorInfo函数3.6 SetConsoleCursorPosition函数3.7 GetA…

STM32-HAL库09-CAN通讯(loopback模式)

一、所用材料&#xff1a; STM32F103C6T6最小系统板 STM32CUBEMX&#xff08;HAL库软件&#xff09; MDK5 串口调试助手 二、所学内容&#xff1a; 初步学习如何使用STM32的CAN通讯功能&#xff0c;在本章节主要达到板内CAN通讯的效果&#xff0c;即32发送CAN信息再在CAN接收…

SpringBoot实现Excel导入导出

SpringBoot实现Excel导入导出 在我们平时工作中经常会遇到要操作Excel的功能&#xff0c;比如导出个用户信息或者订单信息的Excel报表。你肯定听说过 POI这个东西&#xff0c;可以实现。但是POI实现的API确实很麻烦&#xff0c;它需要写那种逐行解析的代码&#xff08;类似Xm…

关于mac下pycharm旧版本没删除的情况下新版本2023安装之后闪退

先说结论&#xff0c;我用的app cleaner 重新删除的pycharm &#xff0c;再重新安装即可。在此记录一下 之前安装的旧版的2020的pycharm&#xff0c;因为装不了新的插件&#xff0c;没办法就升级了。新装2023打开之后闪退&#xff0c;重启系统也不行&#xff0c;怀疑是一起破解…

3D全景技术,为我们打开全新宣传领域

随着科技的发展&#xff0c;3D全景技术正在融入我们的生活&#xff0c;这种全新视觉体验方式为我们打开了一扇全新的宣传领域&#xff0c;可以让我们多方位、多视角地探索各个行业&#xff0c;无论是对教育、商业、还是其他领域&#xff0c;都产生了深远的影响。 3D全景技术结合…

【每日一题】—— C. Anonymous Informant(Codeforces Round 908 (Div. 2))(思维题)

&#x1f30f;博客主页&#xff1a;PH_modest的博客主页 &#x1f6a9;当前专栏&#xff1a;每日一题 &#x1f48c;其他专栏&#xff1a; &#x1f534; 每日反刍 &#x1f7e1; C跬步积累 &#x1f7e2; C语言跬步积累 &#x1f308;座右铭&#xff1a;广积粮&#xff0c;缓称…

Python基础入门----Python虚拟环境:为何要用虚拟环境、如何使用virtualenv

文章目录 在Python开发中,虚拟环境是一个独立的目录树,可以在其中安装Python模块。每个虚拟环境都有自己的Python二进制文件和一组安装的库。使用虚拟环境的主要原因是为了避免项目间的依赖冲突,允许每个项目有其特定的依赖,而不影响全局安装的模块。 为何要用虚拟环境 依…

三菱FX3U系列—原点回归指令

目录 一、简介 二、指令形式 1、原点指令[ZRN/DZRN] 2、带搜索的原点回归指令[DSZR] 三、回归指令运行过程 1、ZRN原点回归运行过程 2、带搜索的原点回归运行过程 四、特殊辅助继电器 五、特殊输出模块 六、总结 一、简介 用于将电机或伺服驱动器控制的轴回到预定的原…

Java枚举类的使用

说明: 根据设计图抽象的枚举类,一张模板背景图(会改变),二维码(传入参数生成),一个关闭的icon(固定不变) 设计图如下 枚举类 去除重复模板后共五个,根据需求编写枚举类如下,url则对应不同的模板,编写成后台人员的可配置项, public enum ImageTemplateEnum {PURCHASE("p…

【ES专题】ElasticSearch功能详解与原理剖析

目录 前言要点阅读对象阅读导航前置知识笔记正文一、ES数据预处理1.1 Ingest Node&#xff1a;摄入节点1.2 Ingest Pipeline&#xff1a;摄入管道1.3 Processor&#xff1a;预处理器——简单加工1.4 Painless Script&#xff1a;脚本——复杂加工1.5 简单实用案例 二、文档/数据…

springcloud二手交易平台系统源码

开发技术&#xff1a; 大等于jdk1.8&#xff0c;大于mysql5.5&#xff0c;idea&#xff08;eclipse&#xff09;&#xff0c;nodejs&#xff0c;vscode&#xff08;webstorm&#xff09; springcloud springboot mybatis vue elementui mysql 功能介绍&#xff1a; 用户端&…

时间序列预测模型实战案例(十)(个人创新模型)通过堆叠CNN、GRU、LSTM实现多元预测和单元预测

本文介绍 本篇博客为大家讲解的是通过组堆叠CNN、GRU、LSTM个数&#xff0c;建立多元预测和单元预测的时间序列预测模型&#xff0c;其效果要比单用GRU、LSTM效果好的多&#xff0c;其结合了CNN的特征提取功能、GRU和LSTM用于处理数据中的时间依赖关系的功能。通过将它们组合在…