网络IO

网络IO

阻塞模型

在之前网络通信都是阻塞模型

  • 客户端向服务端发出请求后,客户端会一直处于等待状态,直到服务器端返回结果或网络出现问题
  • 服务器端也是如此,在处理某个客户端A发来的请求时,另一个客户端B发来的请求会等待,直到服务器端的处理线程线程上一个请求的处理

在服务端使用ServerSocket来建立套接字,accept方法会进行阻塞等待客户端的连接

try(
        // 创建一个ServerSocket对象
        ServerSocket serverSocket = new ServerSocket(9090);
        // accept方法,返回Socket对象,这里会进行阻塞,应用程序向操作系统请求接收已准备好的客户端连接的数据信息
        Socket s = serverSocket.accept();
        // 获取输入流,这里读取数据也会阻塞
        InputStream is = s.getInputStream();
        // 输出流,给客户端返回消息
        OutputStream os = s.getOutputStream();
        InputStreamReader isr = new InputStreamReader(is);
        BufferedReader reader = new BufferedReader(isr);
){
    String str;
    while ((str = reader.readLine()) != null){
        System.out.print(str);
    }
    os.write("我已收到消息".getBytes());
    
catch (IOException e){
    e.printStackTrace();
}
serverSocket.accept()阻塞

服务器端发起一个accept动作,询问操作系统是否有新的Socket套接字信息从端口发送过来,如果没有则serverSocket.accept()会一直等待

阻塞模型的问题:

  • 同一时间,服务器只能接收一个客户端的请求信息,第二个客户端需要等待服务器接收完第一个请求数据后才会被接收
  • 服务器一次只能处理一个客户端请求,处理完成并返回后才能进行第二次请求的处理

多线程阻塞模型

由于阻塞模型的弊端,高并发时会导致请求太慢,所以提出了使用多线程来解决上述阻塞问题

  • 服务器收到客户端A的请求后,开启线程去进行数据处理。主线程可以继续接收客户端B的请求

但是这样在进行serverSocket.accept();操作时还是单线程运行,只有业务处理才会使用多线程,对于接收数据的并发能力并没有提升

同步非阻塞模型

这里先说一下同步和非同步的概念

同步和非同步是操作系统级别的,主要描述操作系统在收到程序请求网络IO操作后,如果网络IO资源没有准备好,该如何响应程序

  • 同步IO不响应程序,直到网络IO资源准备好
  • 非同步IO返回一个标记,当网络IO资源准备好后,用事件机制通知给程序

再说一下阻塞和非阻塞的概念

阻塞和非阻塞是程序级别的,主要描述程序请求操作系统IO操作后,如果网络IO资源没有准备好,程序如何处理

  • 阻塞IO会进行等待
  • 非阻塞IO会继续执行,且使用线程一直轮询,直到IO资源准备好
{
        boolean flag = true;
        try {
            ServerSocket serverSocket = new ServerSocket(6666);
            // 使用超时时间来设置为非阻塞状态,超过该时间会抛出SocketTimeoutException
            serverSocket.setSoTimeout(100);

            while (true){
                Socket socket = null;
                try{
                    // 设置了超时时间后accept就不会阻塞了
                    socket  = serverSocket.accept();
                } catch (SocketTimeoutException e){
                    synchronized (obj){   // 100ms内没有接收到任何数据,可以在这里做一些别的操作
                        System.out.println("没接收到数据,先歇一歇吧");
                        try {
                            obj.wait(10);
                        } catch (InterruptedException interruptedException) {
                            interruptedException.printStackTrace();
                        }
                    }
                    continue;

                }
              // 开线程处理数据
                new Thread(socket).start();
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

serverSocket.setSoTimeout可以使accept方法不一直阻塞,而是到了超时时间后抛出SocketTimeoutException异常,此时就可以用主线程做别的事情了,虽然实际还是使用的accept阻塞模型,但是有所改善

多路复用模型

多路复用模型(也就是NIO)不在使用操作系统级别的同步IO,目前主要实现有select、poll、epoll、kqueue

{
    ByteBuffer byteBuffer = ByteBuffer.allocate(1024);
    Selector selector = Selector.open();
    ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
    // 设置为非阻塞
    serverSocketChannel.configureBlocking(false);
    // 绑定8080端口
    serverSocketChannel.bind(new InetSocketAddress(8080));

    // 注册监听的事件
    // ServerSocketChannel只能注册OP_ACCEPT
    // SocketChannel可注册OP_READ、OP_WRITE、OP_CONNECT
    serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT);


    while(true){
        // 询问selector中准备好的事件
        selector.select();
        // 获取到上述询问拿到的事件类型
        Set<SelectionKey> selectionKeys =  selector.selectedKeys();
        Iterator<SelectionKey> iterator = selectionKeys.iterator();
        while (iterator.hasNext()){
            SelectionKey selectionKey = iterator.next();
            if(selectionKey.isAcceptable()){
                ServerSocketChannel ssc = (ServerSocketChannel) selectionKey.channel();
                // 接收到服务端的请求
                SocketChannel sc = ssc.accept();
                sc.configureBlocking(false);
                sc.register(selector,SelectionKey.OP_READ);
                // 处理过了就要移除掉,否则再次select()还会拿到该事件
                iterator.remove();
            } else if(selectionKey.isReadable()){
                SocketChannel sc = (SocketChannel) selectionKey.channel();
                byteBuffer.clear();
                int n = sc.read(byteBuffer);
                if(n > 0){
                    byteBuffer.flip();
                    Charset charset = StandardCharsets.UTF_8;
                    String message = String.valueOf(charset.decode(byteBuffer).array());
                    System.out.println(message);
                }
                sc.register(selector,SelectionKey.OP_WRITE);
                iterator.remove();
            } else if(selectionKey.isWritable()){
                SocketChannel sc = (SocketChannel) selectionKey.channel();
                ByteBuffer buffer = ByteBuffer.allocate(1024);
                buffer.put("已接收到消息".getBytes());
                buffer.flip();
                sc.write(buffer);
                iterator.remove();
            }
        }
    }

}

多路复用显然绕过了accept方法的阻塞问题,使得操作系统可以在一个端口上能够同时接收多个客户端的IO事件

https://zhhll.icu/2022/java基础/IO/4.网络IO/

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/135362.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2023年度API安全状况详解

随着云计算和移动应用的快速发展&#xff0c;API&#xff08;应用程序接口&#xff09;已成为不可或缺的技术组成部分。然而&#xff0c;API的广泛使用也带来了安全风险。本文将探讨2023年的API安全状况&#xff0c;并介绍了一些应对这些安全挑战的最佳实践。 引言 随着全球互联…

深度学习入门-基于Python的理论与实现摘要记录

基本是《深度学习入门-基于Python的理论与实现》的复制粘贴&#xff0c;以作为日后的检索和查询使用 感知机 感知机接收多个输入信号&#xff0c;输出一个信号。 感知机原理 感知机接收多个输入信号&#xff0c;输出一个信号。 图2-1是一个接收两个输入信号的感知机的例子。…

网络工程师回顾学习(第一部分)

根据书本目录&#xff0c;写下需要记忆的地方&#xff1a; 参考之前的笔记&#xff1a; 网络工程师回答问题_one day321的博客-CSDN博客 重构第一部分需要记忆的&#xff1a; 第一章&#xff1a;计算机网络概论 计算机网络的定义和分类&#xff1a;计算机网络是指将地理位…

IPv6详解

目录: 第一部分 IPv6的诞生背景和引起的主要变化 第二部分 IPv6数据报的基本首部和扩展首部 第三部分 IPv6地址 第四部分 IPv4向IPv6过渡 第一部分 IPv6的诞生背景和引起的主要变化 一.IPv6的诞生背景 IPv4存在设计缺陷: IPv4的设计者最初并没有想到该协议会在全球范围内广…

DRF 学习

一、安装DRF 1、pip install djangorestframework -i https://pypi.douban.com/simple 2、pip install pymysql -i https://pypi.douban.com/simple 二、创建Django项目 1、django-admin startproject drfdemo 三、添加rest_framework应用 1、INSTALLED_APPS …

centos7.9 postgresql 16.0 源码安装部署

postgresql 16.0 源码安装部署 环境准备 系统主机名IP地址centos7.9postgres192.168.200.56 软件准备 postgresql-16.0.tar.gz https://ftp.postgresql.org/pub/source/v16.0/postgresql-16.0.tar.gz依赖安装 yum -y install systemd-devel readline readline-devel zlib-devel…

2023辽宁省数学建模B题数据驱动的水下导航适配区分类预测完整原创论文分享(python求解)

大家好呀&#xff0c;从发布赛题一直到现在&#xff0c;总算完成了辽宁省数学建模B题完整的成品论文。 本论文可以保证原创&#xff0c;保证高质量。绝不是随便引用一大堆模型和代码复制粘贴进来完全没有应用糊弄人的垃圾半成品论文。 B用Python&#xff0b;SPSSPRO求解&…

RabbitMQ 消息中间件

消息中间件 1、简介 消息中间件也可以称消息队列&#xff0c;是指用高效可靠的消息传递机制进行与平台无关的数据交流&#xff0c;并基于数据通信来进行分布式系统的集成。通过提供消息传递和消息队列模型&#xff0c;可以在分布式环境下扩展进程的通信。 当下主流的消息中间…

Redisson实现延迟队列

延迟队列是指在队列中存储带有过期时间的数据&#xff0c;在过期时间到达时自动从队列中移除。 延时队列的使用场景&#xff1a; 订单超过15分钟未支付自动取消推送数据至第三方平台&#xff0c;如果失败重新入队推送&#xff0c;推送间隔时间随着失败次数增加而扩大。分布式情…

linux 查看并统计进程、线程数量: awk 分组统计

1&#xff0c;统计进程数量 #1, 统计所有进程数量 test2:/root # ps -ef |wc -l 444#2, 统计root进程数量 test2:/root # ps -U root -u root -f |wc -l 184#3, 统计非root进程数量 test2:/root # ps -U root -u root -f -N |wc -l 261#4&#xff0c;验证数量是否一致&…

小程序提交表单之后,清除表单form

构造表单 <form bindsubmit"bindFormSubmit"> <view class"main"><textarea name"textarea" value"{{content}}"></textarea> <button form-type"submit" type"primary" > 提交 &…

PHP将pdf转为图片后用OCR识别

1.确保apt包是最新 sudo apt update 2.使用apt安装 sudo apt install tesseract-ocr 3.检查版本 tesseract --version 4.pdf转成图片&#xff0c;这边需要安装imagick插件 $pdf new Imagick(); $pdf->setResolution(150, 150); $pdf->readImage(..$temp); $pdf->…

如何提高40%的Docker构建时间

1. 背景 在产品开发中构建docker镜像,随着时间的推移,会变得越来越大,构建时间也越来越长。我的目标是构建时间不超过 5 分钟。 2. 遵循Dockerfile的最佳实践 我们首先确保Dockerfile文件遵循Docker官方的最佳实践,具体做法有: 尽量使用官方的基础镜像,Docker推荐使用…

【腾讯云 TDSQL-C Serverless 产品体验】以TDSQL-C Mysql Serverless 作为数据中心爬取豆瓣图书数据

【腾讯云 TDSQL-C Serverless 产品体验】以TDSQL-C Mysql Serverless 作为数据中心爬取豆瓣图书数据 文章目录 【腾讯云 TDSQL-C Serverless 产品体验】以TDSQL-C Mysql Serverless 作为数据中心爬取豆瓣图书数据背景TDSQL-C Serverless Mysql介绍以TDSQL-C Mysql Serverless 作…

el-select 选中的值与展示的不一样

背景&#xff1a; 查询列表&#xff0c;用户名和邮箱混合展示&#xff0c;选中后只展示邮箱前缀&#xff0c;并高亮&#xff0c;保存时传整个信息&#xff0c;回显时展示前缀&#xff1b; <el-selectv-model"labelForm.notifyUser"clearablemultipleremotefilter…

记录两个Excel导出出现的问题

问题一&#xff1a;导出数据时&#xff0c;这行代码返回null&#xff0c;导致导出excel失败&#xff1b; Workbook workbook ExcelExportUtil.exportExcel(params, map);解决&#xff1a;排查出来&#xff0c;是因为版本问题&#xff0c;autopoi版本是1.2.1&#xff1b; 升级…

Nginx 实现负载均衡

目录 一&#xff1a;负载均衡介绍 二、 负载均衡具备的功能 1.提高服务器性能 2.提高系统可用性 3.提高系统的可伸缩性 4.实现流量均衡 三、示例配置&#xff0c;如何使用nginx实现负载均衡 四、负载均衡策略配置 1.基于轮询的负载均衡&#xff08;默认&#…

时间序列预测:深度学习、机器学习、融合模型、创新模型实战案例(附代码+数据集+原理介绍)

本文介绍->给大家推荐一下我的时间序列预测专栏&#xff0c;本专栏平均质量分98分&#xff0c;而且本专栏目前免费阅读&#xff0c;其中涉及机器学习、深度学习、融合模型、个人创新模型、数据分析等一系列有关时间序列的专栏&#xff0c;其中的实战的案例不仅有简单的模型类…

Vue中的 配置项 setup

setup 是 Vue3 中的一个全新的配置项&#xff0c;值为一个函数。 setup 是所有 Composition API&#xff08;组合式API&#xff09;的入口&#xff0c;是 Vue3 语法的基础。 组件中所用到的数据、方法、计算属性等&#xff0c;都需要配置在 setup 中。 setup 会在 beforeCre…

从业务到软件架构——软件建模

一、问题 1.架构到底是什么&#xff1f;架构和业务之间到底什么关系&#xff1f; 2.好的架构的设计出发点是什么&#xff1f;好的架构应该是什么样的&#xff1f; 作为一个计算机领域的词汇&#xff0c;架构的定义是&#xff1a;有关软件整体结构与组件的抽象描述&#xff0c…