IPv6详解

目录:
第一部分 IPv6的诞生背景和引起的主要变化
第二部分 IPv6数据报的基本首部和扩展首部
第三部分 IPv6地址
第四部分 IPv4向IPv6过渡

第一部分 IPv6的诞生背景和引起的主要变化

一.IPv6的诞生背景

  • IPv4存在设计缺陷:
    • IPv4的设计者最初并没有想到该协议会在全球范围内广泛使用,因此 IPv4地址的长度规定为他们认为足够长的32比特。
    • IPv4地址早期的编址方法(分类的IPv4地址和划分子网的IPv4地址)也不够合理,造成IPv4地址资源的浪费。

二.IPv6引起的主要变化

在这里插入图片描述

第二部分 IPv6数据报的基本首部和扩展首部

IPv6数据报由基本首部和有效载荷组成,有效载荷又由扩展首部和数据部分组成
在这里插入图片描述
注意:所有的扩展首部并不属于IPv6数据报的首部,它们与其后面的数据部分合起来构成有效载荷(payload,也称为净负荷)

IPv6和IPv4的组成对比:

  • IPv6将IPv4数据报首部中不必要的功能取消了,这使得IPv6数据报基本首部中的字段数量减少到只有8个
    • 但由于IPv6地址的长度扩展到了128比特,因此使得IPv6数据报基本首部的长度反而增大到了40字节,比IPv4数据报首部固定部分的长度(20字节)增大了20字节。
1.取消了首部长度字段,因为IPv6数据报的首部长度是固定的40字节。
2.取消了区分服务((服务类型)字段,因为IPv6数据报首部中的通信量类和流标号字段实现了区分服务字段的功能。
3.取消了总长度字段,改用有效载荷长度字段。这是因为IPv6数据报的首部长度是固定的40字节,只有其后面的有效载荷长度是可变的。
4.取消了标识、标志和片偏移字段,因为这些功能已包含在IPv6数据报的分片扩展首部中。
5.把生存时间TTL字段改称为跳数限制字段,这样名称与作用更加一致。
6.取消了协议字段,改用下一个首部字段。
7.取消了首部检验和字段,这样可以加快路由器处理IPv6数据报的速度。
8.取消了选项字段,改用扩展首部来实现选项功能。

一.IPv6数据报的基本首部

版本字段:长度为4比特,用来表示lP协议的版本。对于IPv6该字段的值是6。

通信量类字段:长度为8比特,该字段用来区分不同的IPv6数据报的类别或优先级。目前正在进行不同的通信量类性能的实验。

  • 流标号字段:长度为20比特。
    • IPv6提出了的抽象概念。
    • 流”就是因特网上从特定源点到特定终点(单
      播或多播)的一系列IPv6数据报(如实时音视频数据的传送),而在这个“流”所经过的路径上的所有路由器都保证指明的服务质量。
    • 所有属于同一个流的IPv6数据报都具有同样的流标号。换句话说,流标号用于资源分配。
    • 流标号对于实时音视频数据的传送特别有用,但对于传统的非实时数据,流标号则没有用处,把流标号字段的值置为0即可

  • 有效载荷长度字段:长度为16比特,它指明IPv6数据报基本首部后面的有效载荷(包括扩展首部和数据部分)的字节数量
    • 该字段以字节为单位,最大取值为65535,因此IPv6数据报基本首部后面的有效载荷的最大长度为65535字节。

  • 下一个首部字段:长度为8比特。该字段相当于IPv4数据报首部中的协议字段或可选字段
    • 当IPv6数据报没有扩展首部时,该字段的作用与IPv4的协议字段一样,它的值指出了IPv6数据报基本首部后面的数据是何种协议数据单元PDU。
    • 当IPv6数据报基本首部后面带有扩展首部时,该字段的值就标识后面第一个扩展首部的类型。

  • 跳数限制字段:长度为8比特。该字段用来防止IPv6数据报在因特网中永久兜圈
    • 源点在每个IPv6数据报发出时即设定某个跳数限制(最大255跳)。
    • 每个路由器在转发IPv6数据报时,要先把跳数限制字段中的值减1。当跳数限制的值为0时,就把这个IPv6数据报丢弃(即不转发)。

  • 源地址字段和目的地址字段:长度都为128比特。分别用来填写IPv6数据报的发送端的IPv6地址和接收端的IPv6地址。

二.IPv6数据报的扩展首部

  • IPv4数据报如果在其首部中使用了选项字段,则在数据报的整个传送路径中的全部路由器,都要对选项字段进行检查,这就降低了路由器处理数据报的速度
  • 实际上,在路径中的路由器对很多选项是不需要检查的。因此,为了提高路由器对数据报的处理效率,IPv6把原来IPv4首部中的选项字段都放在了扩展首部中,由路径两端的源点和终点的主机来处理,而数据报传送路径中的所有路由器都不处理这些扩展首部(除逐跳选项扩展首部)。

在[RFC 2460]中定义了以下六种扩展首部:

(1)逐跳选项
(2)路由选择
(3)分片
(4)鉴别
(5)封装安全有效载荷
(6)目的站选项

每一个扩展首部都由若干个字段组成,它们的长度也各不相同。
所有扩展首部中的第一个字段都是8比特的下一个首部字段。该字段的值指出在该扩展首部后面是何种扩展首部。
当使用多个扩展首部时,应按以上的先后顺序出现

第三部分 IPv6地址

一.IPv6地址空间大小

在这里插入图片描述

二.IPv6地址的表示方法

冒号十六进制记法
在这里插入图片描述
更加简洁的计法:

  • 在IPv6地址的冒号十六进制记法的基础上,再使用“左侧零”省略“连续零”压缩,可使IPv6地址的表示更加简洁
    • “左侧零”省略是指两个冒号间的十六进制数中最前面的一串0可以省略不写。
    • “连续零”压缩是指一连串连续的0可以用一对冒号取代。
  • 在一个IPv6地址中只能使用一次“连续零”压缩,否则会导致歧义。
    在这里插入图片描述
  • 冒号十六进制记法还可结合点分十进制的后缀。这在IPv4向IPv6过渡阶段非常有用。
  • CIDR的斜线表示法在IPv6中仍然可用。

三.IPv6地址的分类

IPv6数据报的目的地址有三种基本类型:

单播 :传统的点对点通信多播:一点对多点的通信。
数据报发送到一组计算机中的每一个。IPv6没有采用广播的术语,而将广播看作多播的一个特例。任播:这是IPv6新增的一种类型。
任播的终点是一组计算机,但数据报只交付其中的一个,通常是按照路由算法得出的距离最近的一个。

[RFC 4291]对IPv6地址进行了分类:

  • 未指明地址

    • 128个比特为“全0”的地址,可缩写为两个冒号“:.”。
    • 该地址不能用作目的地址,只能用于还没有配置到一个标准IPv6地址的主机用作源地址。
  • 环回地址;

    • 最低比特为1,其余127个比特为“全0”,即0:0:0:0:0:0:0:1,可缩写为:1。
    • 该地址的作用与IPv4的环回地址相同。
  • 多播地址:

    • 最高8比特为“全1”的地址,可记为FFO0::/8。
    • IPv6多播地址的功能与IPv4多播地址相同。
    • 这类地址占IPv6地址空间
  • 本地链路单播地址:

    • 最高10比特为1111111010的地址,可记为FE80::/10。
    • 即伸用户网络没有连接到因特网,但仍然可以使用TCPIP协议。连接在这种网络上的主机都可以使用本地链路单播地址进行通信,但不能和因特网上的其他主机通信。
  • 全球单播地址:

    • 全球单播地址是使用得最多的一类地址。
    • IPv6全球单播地址采用三级结构,这是为了使路由器可以更快地查找路由。
      在这里插入图片描述

第四部分 IPv4向IPv6过渡

  • 因特网上使用IPv4的路由器的数量太大,要让所有路由器都改用IPv6并不能一蹴而就。因此,从IPv4转变到IPv6只能采用逐步演进的办法
  • 另外,新部署的IPv6系统必须能够向后兼容,也就是IPv6系统必须能够接收和转发IPv4数据报,并且能够为IPv4数据报选择路由。
  • 下面介绍两种由IPv4向IPv6过渡的策略:
    • 使用双协议栈
    • 使用隧道技术

一.双协议栈

  • 双协议栈(Dual Stack)是指在完全过渡到IPv6之前,使一部分主机或路由器装有IPv4和IPv6两套协议栈
  • 双协议栈主机或路由器既可以和IPv6系统通信,又可以和IPv4系统通信。
  • 双协议栈主机或路由器记为IPv6/IPv4,表明它具有一个IPv6地址和一个IPv4地址
    • 双协议栈主机在与IPv6主机通信时采用IPv6地址,而与IPv4主机通信时采用IPv4地址。
    • 双协议栈主机通过域名系统DNS查询目的主机采用的IP地址:
      • 若DNS返回的是IPv4地址,则双协议栈的源主机就使用IPv4地址
      • 若DNS返回的是IPv6地址,则双协议栈的源主机就使用IPv6地址。

在这里插入图片描述

二.隧道技术

  • 隧道技术(Tunneling)的核心思想是:
    • 当IPv6数据报要进入IPv4网络时,将IPv6数据报重新封装成IPv4数据报,即整个IPv6数据报成为IPv4数据报的数据载荷。
    • 封装有IPv6数据报的IPv4数据报在IPv4网络中传输。
    • 当IPv4数据报要离开IPv4网络时,再将其数据载荷(即原来的IPv6数据报)取出并转发到IPv6网络。
      在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/135357.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DRF 学习

一、安装DRF 1、pip install djangorestframework -i https://pypi.douban.com/simple 2、pip install pymysql -i https://pypi.douban.com/simple 二、创建Django项目 1、django-admin startproject drfdemo 三、添加rest_framework应用 1、INSTALLED_APPS …

centos7.9 postgresql 16.0 源码安装部署

postgresql 16.0 源码安装部署 环境准备 系统主机名IP地址centos7.9postgres192.168.200.56 软件准备 postgresql-16.0.tar.gz https://ftp.postgresql.org/pub/source/v16.0/postgresql-16.0.tar.gz依赖安装 yum -y install systemd-devel readline readline-devel zlib-devel…

2023辽宁省数学建模B题数据驱动的水下导航适配区分类预测完整原创论文分享(python求解)

大家好呀,从发布赛题一直到现在,总算完成了辽宁省数学建模B题完整的成品论文。 本论文可以保证原创,保证高质量。绝不是随便引用一大堆模型和代码复制粘贴进来完全没有应用糊弄人的垃圾半成品论文。 B用Python+SPSSPRO求解&…

RabbitMQ 消息中间件

消息中间件 1、简介 消息中间件也可以称消息队列,是指用高效可靠的消息传递机制进行与平台无关的数据交流,并基于数据通信来进行分布式系统的集成。通过提供消息传递和消息队列模型,可以在分布式环境下扩展进程的通信。 当下主流的消息中间…

Redisson实现延迟队列

延迟队列是指在队列中存储带有过期时间的数据,在过期时间到达时自动从队列中移除。 延时队列的使用场景: 订单超过15分钟未支付自动取消推送数据至第三方平台,如果失败重新入队推送,推送间隔时间随着失败次数增加而扩大。分布式情…

linux 查看并统计进程、线程数量: awk 分组统计

1,统计进程数量 #1, 统计所有进程数量 test2:/root # ps -ef |wc -l 444#2, 统计root进程数量 test2:/root # ps -U root -u root -f |wc -l 184#3, 统计非root进程数量 test2:/root # ps -U root -u root -f -N |wc -l 261#4,验证数量是否一致&…

小程序提交表单之后,清除表单form

构造表单 <form bindsubmit"bindFormSubmit"> <view class"main"><textarea name"textarea" value"{{content}}"></textarea> <button form-type"submit" type"primary" > 提交 &…

PHP将pdf转为图片后用OCR识别

1.确保apt包是最新 sudo apt update 2.使用apt安装 sudo apt install tesseract-ocr 3.检查版本 tesseract --version 4.pdf转成图片&#xff0c;这边需要安装imagick插件 $pdf new Imagick(); $pdf->setResolution(150, 150); $pdf->readImage(..$temp); $pdf->…

如何提高40%的Docker构建时间

1. 背景 在产品开发中构建docker镜像,随着时间的推移,会变得越来越大,构建时间也越来越长。我的目标是构建时间不超过 5 分钟。 2. 遵循Dockerfile的最佳实践 我们首先确保Dockerfile文件遵循Docker官方的最佳实践,具体做法有: 尽量使用官方的基础镜像,Docker推荐使用…

【腾讯云 TDSQL-C Serverless 产品体验】以TDSQL-C Mysql Serverless 作为数据中心爬取豆瓣图书数据

【腾讯云 TDSQL-C Serverless 产品体验】以TDSQL-C Mysql Serverless 作为数据中心爬取豆瓣图书数据 文章目录 【腾讯云 TDSQL-C Serverless 产品体验】以TDSQL-C Mysql Serverless 作为数据中心爬取豆瓣图书数据背景TDSQL-C Serverless Mysql介绍以TDSQL-C Mysql Serverless 作…

el-select 选中的值与展示的不一样

背景&#xff1a; 查询列表&#xff0c;用户名和邮箱混合展示&#xff0c;选中后只展示邮箱前缀&#xff0c;并高亮&#xff0c;保存时传整个信息&#xff0c;回显时展示前缀&#xff1b; <el-selectv-model"labelForm.notifyUser"clearablemultipleremotefilter…

记录两个Excel导出出现的问题

问题一&#xff1a;导出数据时&#xff0c;这行代码返回null&#xff0c;导致导出excel失败&#xff1b; Workbook workbook ExcelExportUtil.exportExcel(params, map);解决&#xff1a;排查出来&#xff0c;是因为版本问题&#xff0c;autopoi版本是1.2.1&#xff1b; 升级…

Nginx 实现负载均衡

目录 一&#xff1a;负载均衡介绍 二、 负载均衡具备的功能 1.提高服务器性能 2.提高系统可用性 3.提高系统的可伸缩性 4.实现流量均衡 三、示例配置&#xff0c;如何使用nginx实现负载均衡 四、负载均衡策略配置 1.基于轮询的负载均衡&#xff08;默认&#…

时间序列预测:深度学习、机器学习、融合模型、创新模型实战案例(附代码+数据集+原理介绍)

本文介绍->给大家推荐一下我的时间序列预测专栏&#xff0c;本专栏平均质量分98分&#xff0c;而且本专栏目前免费阅读&#xff0c;其中涉及机器学习、深度学习、融合模型、个人创新模型、数据分析等一系列有关时间序列的专栏&#xff0c;其中的实战的案例不仅有简单的模型类…

Vue中的 配置项 setup

setup 是 Vue3 中的一个全新的配置项&#xff0c;值为一个函数。 setup 是所有 Composition API&#xff08;组合式API&#xff09;的入口&#xff0c;是 Vue3 语法的基础。 组件中所用到的数据、方法、计算属性等&#xff0c;都需要配置在 setup 中。 setup 会在 beforeCre…

从业务到软件架构——软件建模

一、问题 1.架构到底是什么&#xff1f;架构和业务之间到底什么关系&#xff1f; 2.好的架构的设计出发点是什么&#xff1f;好的架构应该是什么样的&#xff1f; 作为一个计算机领域的词汇&#xff0c;架构的定义是&#xff1a;有关软件整体结构与组件的抽象描述&#xff0c…

C# OpenCvSharp 去除文字中的线条

效果 中间过程效果 项目 代码 using OpenCvSharp; using System; using System.Drawing; using System.Windows.Forms; using static System.Net.Mime.MediaTypeNames;namespace OpenCvSharp_Demo {public partial class frmMain : Form{public frmMain(){InitializeComponent…

禅道系统迁移笔记

禅道是一个可免费使用的开源项目管理系统。 最近执行了一个禅道系统服务器迁移的任务。做笔记备查。 迁移基本情况&#xff1a; 将现有禅道系统转移到一个新服务器内。原服务器为CentOS 8&#xff0c;新服务器为ubuntu 20.04 LTS。 禅道版本18.2. 迁移基本思路如下&#…

Linux开发板安装Ubuntu标准桌面环境(或其他桌面环境)

我们每入手一款开发板&#xff0c;一般配套的固件系统都会默认运行相应厂商定制的桌面环境&#xff08;在一些桌面环境上定制的&#xff09;。这个时候有些同学可能不喜欢厂商定制的桌面系统想要安装其他桌面系统比如我们虚拟机上常用的Ubuntu标准桌面系统&#xff08;不建议因…

毫米波雷达技术的医疗创新:开启无创检测与监测的新时代

随着科技的不断进步&#xff0c;毫米波雷达技术正日益成为医疗领域的一项引人注目的创新。其无创性质、高分辨率和多功能性为医学诊断和监测带来了新的可能性。本文将深入探讨毫米波雷达技术在医疗创新中的应用&#xff0c;着眼于无创检测与监测领域的突破性发展。 1. 毫米波雷…