【堆 (优先队列) 扫描线】218. 天际线问题

本文涉及知识点

堆 (优先队列) 扫描线

LeetCode218. 天际线问题

城市的 天际线 是从远处观看该城市中所有建筑物形成的轮廓的外部轮廓。给你所有建筑物的位置和高度,请返回 由这些建筑物形成的 天际线 。
每个建筑物的几何信息由数组 buildings 表示,其中三元组 buildings[i] = [lefti, righti, heighti] 表示:
lefti 是第 i 座建筑物左边缘的 x 坐标。
righti 是第 i 座建筑物右边缘的 x 坐标。
heighti 是第 i 座建筑物的高度。
你可以假设所有的建筑都是完美的长方形,在高度为 0 的绝对平坦的表面上。
天际线 应该表示为由 “关键点” 组成的列表,格式 [[x1,y1],[x2,y2],…] ,并按 x 坐标 进行 排序 。关键点是水平线段的左端点。列表中最后一个点是最右侧建筑物的终点,y 坐标始终为 0 ,仅用于标记天际线的终点。此外,任何两个相邻建筑物之间的地面都应被视为天际线轮廓的一部分。
注意:输出天际线中不得有连续的相同高度的水平线。例如 […[2 3], [4 5], [7 5], [11 5], [12 7]…] 是不正确的答案;三条高度为 5 的线应该在最终输出中合并为一个:[…[2 3], [4 5], [12 7], …]

示例 1:

输入:buildings = [[2,9,10],[3,7,15],[5,12,12],[15,20,10],[19,24,8]]
输出:[[2,10],[3,15],[7,12],[12,0],[15,10],[20,8],[24,0]]
解释:
图 A 显示输入的所有建筑物的位置和高度,
图 B 显示由这些建筑物形成的天际线。图 B 中的红点表示输出列表中的关键点。
示例 2:

输入:buildings = [[0,2,3],[2,5,3]]
输出:[[0,3],[5,0]]

提示:

1 <= buildings.length <= 104
0 <= lefti < righti <= 231 - 1
1 <= heighti <= 231 - 1
buildings 按 lefti 非递减排序

懒删除堆+ 扫描线

通过观察示例,我们可以得出如下结论:
性质一:关键点的横坐标一定是建筑的左右边缘。令建筑的左右边缘的集合是xs。
性质二:xs中除以下元素外,全部是关键点:
∀ \forall x,i ,其中 x ∈ \in xs。 x in $[lefti,righti] x对应的height 小于等于heighti。
性质三:根据性质二,一个x对应多个height,取最大值。xh记录x及对应高度。
性质四:根据性质三,性质二可以简化为 x in $(lefti,righti)
lh 记录左边界及高度。
rh记录有边界及高度。
xh、lh、rh都按x的升序排序。
有序mulset has代替懒删除堆 记录:
lefti < x ,righti > x的高度。 如果高度的最大值小于x对应的高度,则是关键点。

关键点的纵坐标y
{ 0 不存在 l e f t i 小于等于 x , r i g h t i 大于 x 的建筑 这些建筑的最大高度 o t h e r \begin{cases} 0 && 不存在lefti小于等于x,righti大于x的建筑\\ 这些建筑的最大高度 && other \\ \end{cases} {0这些建筑的最大高度不存在lefti小于等于x,righti大于x的建筑other
如果两个相邻的关键点高度相同,删除前面的关键点。

代码

核心代码

  class Solution {public:vector<vector<int>> getSkyline(vector<vector<int>>& buildings) {vector<pair<int, int>> tmp,xh, lh, rh;for (const auto& v : buildings) {lh.emplace_back(make_pair(v[0], v[2]));rh.emplace_back(make_pair(v[1], v[2]));}tmp = lh;tmp.insert(tmp.end(), rh.begin(), rh.end());sort(tmp.begin(), tmp.end());sort(rh.begin(), rh.end());		 for (const auto& [x, h] : tmp) {if (xh.size() && (xh.back().first == x)) {xh.back().second = h;}else {xh.emplace_back(make_pair(x, h));}}multiset<int> has;int il = 0, ir = 0;vector<vector<int>> ret;for (const auto& [x, h] : xh) {			 while ((il < lh.size() )&& (lh[il].first < x)) {has.emplace(lh[il++].second);}while ((ir < rh.size()) && (rh[ir].first <= x)) {has.erase(has.find(rh[ir].second));ir++;}if (has.empty() || (*has.rbegin() < h)) {ret.emplace_back(vector<int>{ x,-1 });}while ((il < lh.size()) && (lh[il].first <= x)) {has.emplace(lh[il++].second);}ret.back()[1] = has.empty()?0: *has.rbegin();	 }		vector < vector<int>> ret2 = { ret[0] };for (int i = 1; i < ret.size(); i++) {if (ret2.back()[1] != ret[i][1]) {ret2.emplace_back(ret[i]);}}return ret2;}};

单元测试

template<class T1, class T2>
void AssertEx(const T1& t1, const T2& t2)
{Assert::AreEqual(t1, t2);
}template<class T>
void AssertEx(const vector<T>& v1, const vector<T>& v2)
{Assert::AreEqual(v1.size(), v2.size());for (int i = 0; i < v1.size(); i++){Assert::AreEqual(v1[i], v2[i]);}
}template<class T>
void AssertV2(vector<vector<T>> vv1, vector<vector<T>> vv2)
{sort(vv1.begin(), vv1.end());sort(vv2.begin(), vv2.end());Assert::AreEqual(vv1.size(), vv2.size());for (int i = 0; i < vv1.size(); i++){AssertEx(vv1[i], vv2[i]);}
}namespace UnitTest
{	vector<vector<int>> buildings;TEST_CLASS(UnitTest){public:TEST_METHOD(TestMethod00){buildings = { {2,9,10},{3,7,15},{5,12,12},{15,20,10},{19,24,8} };auto res = Solution().getSkyline(buildings);AssertV2(vector<vector<int>>{ {2, 10}, { 3,15 }, { 7,12 }, { 12,0 }, { 15,10 }, { 20,8 }, { 24,0 }}, res);}TEST_METHOD(TestMethod01){buildings = { {0,2,3},{2,5,3} }		;auto res = Solution().getSkyline(buildings);AssertV2(vector<vector<int>>{ {0, 3}, { 5,0 }}, res);}};
}

简化思路

所有x都是关键点,除非y和前一个x相同。
y = max(所有左边界 <= x,右边界大于x的建筑高度),所有没有符合的建筑y为0。

class Solution {
public:vector<vector<int>> getSkyline(vector<vector<int>>& buildings) {vector<pair<int, int>> tmp, xh, lh, rh;for (const auto& v : buildings) {lh.emplace_back(make_pair(v[0], v[2]));rh.emplace_back(make_pair(v[1], v[2]));}tmp = lh;tmp.insert(tmp.end(), rh.begin(), rh.end());sort(tmp.begin(), tmp.end());sort(rh.begin(), rh.end());for (const auto& [x, h] : tmp) {if (xh.size() && (xh.back().first == x)) {xh.back().second = h;}else {xh.emplace_back(make_pair(x, h));}}multiset<int> has;int il = 0, ir = 0;vector<vector<int>> ret;for (const auto& [x, h] : xh) {while ((il < lh.size()) && (lh[il].first <= x)) {has.emplace(lh[il++].second);}while ((ir < rh.size()) && (rh[ir].first <= x)) {has.erase(has.find(rh[ir].second));ir++;}int y = has.empty() ? 0 : *has.rbegin();if (ret.empty() || (ret.back()[1] != y)) {ret.emplace_back(vector<int>{x, y});}}return ret;}
};

扩展阅读

视频课程

先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关推荐

我想对大家说的话
《喜缺全书算法册》以原理、正确性证明、总结为主。
按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。
有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注
闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/43871.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

景芯SoC训练营DFT debug

景芯训练营VIP学员在实践课上遇到个DFT C1 violation&#xff0c;导致check_design_rule无法通过&#xff0c;具体报错如下&#xff1a; 遇到这个问题第一反映一定是确认时钟&#xff0c;于是小编让学员去排查add_clock是否指定了时钟&#xff0c;指定的时钟位置是否正确。 景芯…

2024年信息系统项目管理师1批次上午客观题参考答案及解析(3)

51、探索各种选项&#xff0c;权衡包括时间与成本、质量与成本、风险与进度、进度与质量等多种因素&#xff0c;在整个过程中&#xff0c;舍弃无效或次优的替代方案&#xff0c;这种不确定性应对方法是()。 A&#xff0e;集合设计 B&#xff0e;坚韧性 C&#xff0e;多种结果…

离线运行Llama3:本地部署终极指南_liama2 本地部署

4月18日&#xff0c;Meta在官方博客官宣了Llama3&#xff0c;标志着人工智能领域迈向了一个重要的飞跃。经过笔者的个人体验&#xff0c;Llama3 8B效果已经超越GPT-3.5&#xff0c;最为重要的是&#xff0c;Llama3是开源的&#xff0c;我们可以自己部署&#xff01; 本文和大家…

大数据------JavaWeb------FilterListenerAJAXAxiosJSON

Filter Filter简介 定义&#xff1a;Filter表示过滤器&#xff0c;是JavaWeb三大组件&#xff08;Servlet、Filter、Listener&#xff09;之一。 作用&#xff1a;它可把对资源&#xff08;Servlet、JSP、Html&#xff09;的请求拦截下来从而实现一些特殊功能 过滤器一般完成…

【QT中实现摄像头播放、以及视频录制】

学习分享 1、效果图2、camerathread.h3、camerathread.cpp4、mainwindow.h5、mainwindow.cpp6、main.cpp 1、效果图 2、camerathread.h #ifndef CAMERATHREAD_H #define CAMERATHREAD_H#include <QObject> #include <QThread> #include <QDebug> #include &…

选择排序(C语言版)

选择排序是一种简单直观的排序算法 算法实现 首先在未排序序列中找到最小&#xff08;大&#xff09;元素&#xff0c;存放到排序序列的起始位置。 再从剩余未排序元素中继续寻找最小&#xff08;大&#xff09;元素&#xff0c;然后放到已排序序列的末尾。 重复第二步&…

020-GeoGebra中级篇-几何对象之点与向量

本文概述了在GeoGebra中如何使用笛卡尔或极坐标系输入点和向量。用户可以通过指令栏输入数字和角度&#xff0c;使用工具或指令创建点和向量。在笛卡尔坐标系中&#xff0c;示例如“P(1,0)”&#xff1b;在极坐标系中&#xff0c;示例如“P(1;0)”或“v(5;90)”。文章还介绍了点…

深入理解循环神经网络(RNN)

深入理解循环神经网络&#xff08;RNN&#xff09; 循环神经网络&#xff08;Recurrent Neural Network, RNN&#xff09;是一类专门处理序列数据的神经网络&#xff0c;广泛应用于自然语言处理、时间序列预测、语音识别等领域。本文将详细解释RNN的基本结构、工作原理以及其优…

uniapp本地打包到Android Studio生成APK文件

&#xff08;1&#xff09;安装 Android Studio 软件&#xff1b; 下载地址&#xff1a;官方下载地址&#xff0c;英文环境 安装&#xff1a;如下之外&#xff0c;其他一键 next &#xff08;2&#xff09;配置java环境&#xff1b; 下载&#xff1a;j…

基于SpringBoot构造超简易QQ邮件服务发送 第二版

目录 追加 邮箱附件 添加依赖 编码 测试 第二版的更新点是追加了 邮箱附件功能 ( 后期追加定时任务 ) 基于SpringBoot构造超简易QQ邮件服务发送(分离-图解-新手) 第一版 追加 邮箱附件 添加依赖 <!-- 电子邮件 --><dependency><groupId>org.spri…

如何评价Flutter?

哈喽&#xff0c;我是老刘 我们团队使用Flutter已经快6年了。 有很多人问过我们对Flutter的评价。 今天在这里回顾一下6年前选择Flutter时的原因&#xff0c;以及Flutter在这几年中的实际表现如何。 选择Flutter时的判断 1、性能 最开始吸引我们的就是其优秀的性能。 特别是…

【vue3|第16期】初探Vue-Router与现代网页路由

日期:2024年7月6日 作者:Commas 签名:(ง •_•)ง 积跬步以致千里,积小流以成江海…… 注释:如果您觉得有所帮助,帮忙点个赞,也可以关注我,我们一起成长;如果有不对的地方,还望各位大佬不吝赐教,谢谢^ - ^ 1.01365 = 37.7834;0.99365 = 0.0255 1.02365 = 1377.4083…

深入探索联邦学习框架 Flower

联邦学习框架 本文主要期望介绍一个设计良好的联邦学习框架 Flower&#xff0c;在开始介绍 Flower 框架的细节前&#xff0c;先了解下联邦学习框架的基础知识。 作为一个联邦学习框架&#xff0c;必然会包含对横向联邦学习的支持。横向联邦是指拥有类似数据的多方可以在不泄露…

【CVPR 2024】GART: Gaussian Articulated Template Models

【CVPR 2024】GART: Gaussian Articulated Template Models 一、前言Abstract1. Introduction2. Related Work3. Method3.1. Template Prior3.2. Shape Appearance Representation with GMM3.3. Motion Representation with Forward Skinning3.4. Reconstruct GART from Monocu…

Java--instanceof和类型转换

1.如图&#xff0c;Object&#xff0c;Person&#xff0c;Teacher&#xff0c;Student四类的关系已经写出来了&#xff0c;由于实例化的是Student类&#xff0c;因此&#xff0c;与Student类存在关系的类在使用instanceof时都会输出True&#xff0c;而无关的都会输出False&…

数据结构 —— Dijkstra算法

数据结构 —— Dijkstra算法 Dijkstra算法划分集合模拟过程打印路径 在上次的博客中&#xff0c;我们解决了使用最小的边让各个顶点连通&#xff08;最小生成树&#xff09; 这次我们要解决的问题是现在有一个图&#xff0c;我们要找到一条路&#xff0c;使得从一个顶点到另一个…

对比学习和多模态任务

1. 对比学习 对比学习&#xff08;Contrastive Learning&#xff09;是一种自监督学习的方法&#xff0c;旨在通过比较数据表示空间中的不同样本来学习有用的特征表示。其核心思想是通过最大化同类样本之间的相似性&#xff08;或降低它们之间的距离&#xff09;&#xff0c;同…

【Linux】网络新兵连

欢迎来到 破晓的历程的 博客 ⛺️不负时光&#xff0c;不负己✈️ 引言 在上一篇博客中&#xff0c;我们简单的介绍了一些Linux网络一些比较基本的概念。本篇博客我们将开始正式学习Linux网络套接字的内容&#xff0c;那么我们开始吧&#xff01; 1.网络中的地址管理 大家一…

GraphRAG——一个基于图的检索增强生成的开源项目【送源码】

GraphRAG 最近几天&#xff0c;微软团队开源了GraphRAG&#xff0c;这是一种基于图&#xff08;Graph&#xff09;的检索增强生成方法。 先说说RAG吧&#xff0c;检索增强生成&#xff0c;相当于是从一个给定好的知识库中进行检索&#xff0c;接入LLM模型&#xff0c;让模型生…

(十六)视图变换 正交投影 透视投影

视图变换 代码实验 #include <glad/glad.h>//glad必须在glfw头文件之前包含 #include <GLFW/glfw3.h> #include <iostream> #define STB_IMAGE_IMPLEMENTATION #include "stb_image.h"//GLM #include <glm/glm.hpp> #include <glm/gtc/m…