Python中的性能分析和优化

在前几篇文章中,我们探讨了Python中的异步编程和并发编程,以及如何结合使用这些技术来提升程序性能。今天,我们将深入探讨如何分析以及优化Python代码的性能,确保应用程序的高效运行!

性能分析的基本工具和方法

在进行性能优化之前,首先需要对代码进行性能分析,找到性能瓶颈;Python提供了多种性能分析工具和方法,包括cProfileline_profilermemory_profilertimeit

使用cProfile进行性能分析

cProfile是Python内置的性能分析工具,可以用于分析函数的执行时间和调用频率:

import cProfiledef my_function():total = 0for i in range(10000):total += ireturn totalcProfile.run('my_function()')

输出结果将显示每个函数的调用次数、总耗时、函数内部耗时等信息,有助于找出性能瓶颈。

使用line_profiler进行逐行分析

line_profiler可以对代码的每一行进行分析,找到具体的性能瓶颈;不过它是第三方库,所以第一步肯定需要先安装:

pip install line_profiler

安装完成之后,就可以使用它对python代码进行逐行分析:

from line_profiler import LineProfilerdef my_function():total = 0for i in range(10000):total += ireturn totalprofiler = LineProfiler()
profiler.add_function(my_function)
profiler.run('my_function()')
profiler.print_stats()
使用memory_profiler进行内存分析

memory_profiler用于分析代码的内存使用情况,帮助找出内存泄漏和优化内存使用,和line_profiler一样,它也是第三方库:

pip install memory_profiler

使用方法如下:

from memory_profiler import profile@profile
def my_function():total = 0for i in range(10000):total += ireturn totalmy_function()

运行代码后,memory_profiler会生成内存使用报告,显示每行代码的内存消耗情况。

使用timeit进行微基准测试

timeit模块用于测量小段代码的执行时间,非常适合进行微基准测试,示例如下:

import timeitdef my_function():total = 0for i in range(10000):total += ireturn totalexecution_time = timeit.timeit('my_function()', globals=globals(), number=1000)
print(f"Execution time: {execution_time}")
优化Python代码的常用方法

1.使用高效的数据结构

选择适当的数据结构可以显著提升代码性能,例如,使用deque代替列表进行队列操作:

from collections import dequequeue = deque()
queue.append(1)
queue.append(2)
queue.popleft()

2.避免不必要的计算

避免在循环中进行不必要的计算和重复操作,将不变的计算移出循环体:

# 优化前
def calculate_sum(n):total = 0for i in range(n):total += i * 2return total# 优化后
def calculate_sum(n):total = 0factor = 2for i in range(n):total += i * factorreturn total

3.使用内置函数和库

Python的内置函数和库通常经过高度优化,可以提供更高的性能:

# 使用内置sum函数
numbers = [1, 2, 3, 4, 5]
total = sum(numbers)

4.并行化计算

对于计算密集型任务,可以使用多线程或多进程进行并行化计算,Python的concurrent.futures模块提供了方便的并行化接口,公众号之前也有

import concurrent.futuresdef calculate_square(n):return n * nwith concurrent.futures.ThreadPoolExecutor() as executor:results = list(executor.map(calculate_square, range(10)))print(results)

5.优化I/O操作

I/O操作通常是性能瓶颈,可以通过异步编程、缓存和批处理来优化I/O操作:

import aiohttp
import asyncioasync def fetch(url):async with aiohttp.ClientSession() as session:async with session.get(url) as response:return await response.text()async def main():urls = ['http://example.com', 'http://example.org', 'http://example.net']tasks = [fetch(url) for url in urls]results = await asyncio.gather(*tasks)for result in results:print(result[:100])asyncio.run(main())
实战示例:优化实际应用中的性能瓶颈

假设我们有一个处理大规模数据的函数,我们可以通过性能分析找到瓶颈并进行优化:

import cProfile
import numpy as npdef process_data(data):result = []for item in data:result.append(item * 2)return resultdata = np.random.rand(1000000)
cProfile.run('process_data(data)')

通过分析,我们发现循环操作是性能瓶颈,可以使用NumPy(这是一个第三方库,主要用于数值计算和数据分析,有时间出一个简单使用教程)的向量化操作进行优化:

def process_data(data):return data * 2data = np.random.rand(1000000)
cProfile.run('process_data(data)')
优化内存使用

假设我们有一个需要处理大量字符串数据的程序,可以使用生成器来优化内存使用:

def process_lines(filename):with open(filename) as file:for line in file:yield line.strip()for line in process_lines('large_file.txt'):print(line)
并行化数据处理

对于大规模数据处理任务,可以使用多进程并行化来提升性能:

import multiprocessing  
import numpy as npdef process_chunk(chunk):return chunk * 2if __name__ == '__main__':data = np.random.rand(1000000)num_chunks = 4chunks = np.array_split(data, num_chunks)with multiprocessing.Pool(processes=num_chunks) as pool:results = pool.map(process_chunk, chunks)processed_data = np.concatenate(results)print(processed_data)

结语

通过本文的介绍,我们学习了如何对Python代码进行性能分析和优化,性能优化是一个持续的过程,需要不断地分析和改进。希望这些技巧能帮助你在实际项目中编写出高效、稳定的代码。如果你对计算机相关技术有更多的兴趣,想要持续的探索,请关注我的公众号哟!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/32955.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

screenshot-to-code之安装、测试

准备 GPT收费账号 screenshot-to-code Supported AI models: GPT-4O - Best model!GPT-4 Turbo (Apr 2024)GPT-4 Vision (Nov 2023)Claude 3 SonnetDALL-E 3 for image generation git或者手动 下载源代码 https://github.com/abi/screenshot-to-code pip install poetry (…

FFmpeg源码:ff_ctz / ff_ctz_c函数分析

一、ff_ctz函数的作用 ff_ctz定义在FFmpeg源码目录的libavutil/intmath.h 下: #ifndef ff_ctz #define ff_ctz ff_ctz_c /*** Trailing zero bit count.** param v input value. If v is 0, the result is undefined.* return the number of trailing 0-bits*/…

从零开始搭建一个酷炫的个人博客

效果图 一、搭建网站 git和hexo准备 注册GitHub本地安装Git绑定GitHub并提交文件安装npm和hexo,并绑定github上的仓库注意:上述教程都是Windows系统,Mac系统会更简单! 域名准备 购买域名,买的是腾讯云域名&#xf…

Kubernetes排错(十)-处理容器数据磁盘被写满

容器数据磁盘被写满造成的危害: 不能创建 Pod (一直 ContainerCreating)不能删除 Pod (一直 Terminating)无法 exec 到容器 如何判断是否被写满? 容器数据目录大多会单独挂数据盘,路径一般是 /var/lib/docker,也可能是 /data/docker 或 /o…

档案数字化建设花费主要在哪里

在档案数字化建设中,主要花费包括以下几个方面: 1. 技术设备和软件:包括购买和维护服务器、计算机、扫描仪、存储设备等硬件设备,以及购买和使用专久智能档案数字化软件和系统。 2. 人力资源:数字化建设需要专业的技术…

虚拟现实环境下的远程教育和智能评估系统(十二)

接下来,把实时注视点位置、语音文本知识点、帧知识点区域进行匹配; 首先,第一步是匹配语音文本知识点和帧知识点区域,我们知道教师所说的每句话对应的知识点,然后寻找当前时间段内,知识点对应的ppt中的区域…

推荐3款自动爬虫神器,再也不用手撸代码了

网络爬虫是一种常见的数据采集技术,你可以从网页、 APP上抓取任何想要的公开数据,当然需要在合法前提下。 爬虫使用场景也很多,比如: 搜索引擎机器人爬行网站,分析其内容,然后对其进行排名,比…

java:spring-security的简单例子

【pom.xml】 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId><version>2.3.12.RELEASE</version> </dependency> <dependency><groupId>org.springf…

嘉楠勘智CanMV-K230的大小核如何操作

摘要&#xff1a;嘉楠勘智CanMV-K230的帮助文档、例子模型说明中&#xff0c;一直在提“大核&#xff0c;小核”&#xff0c;还提到将文件复制到小核并解压&#xff0c;然后在大核中操作&#xff0c;本文介绍一下这两个“核”如何操作。 所需的硬件&#xff1a;CanMV-K230-V1.1…

<router-view />标签的理解

< router-view />标签的理解 < router-view />用来承载当前级别下的子集路由的一个视图标签。显示当前路由级别下一级的页面。 App.vue是根组件&#xff0c;在它的标签里使用&#xff0c;而且配置好路由的情况下&#xff0c;就能在浏览器上显示子组件的效果。 如…

Python题目

实例 3.1 兔子繁殖问题&#xff08;斐波那契数列&#xff09; 兔子从出生后的第三个月开始&#xff0c;每月都会生一对兔子&#xff0c;小兔子成长到第三个月后也会生一对独自。初始有一对兔子&#xff0c;假如兔子都不死&#xff0c;那么计算并输出1-n个月兔子的数量 n int…

皇河将相董事长程灯虎出席第二十四届世纪大采风并获奖

仲夏时节,西子湖畔。第二十四届世纪大采风品牌人物年度盛典于6月16日至17日在杭州东方文化园隆重举行。本届盛典由亿央网、《华夏英才》电视栏目联合多家媒体共同主办,中世采文化发展集团承办,意尔康股份有限公司、宸咏集团协办,汇聚了来自全国政、商、产、学、研、媒等各界代表…

Eureka 服务注册与发现

目录 前言 注册中心 CAP 理论 常⻅的注册中心 CAP理论对比 Eureka 搭建 Eureka Server 引⼊ eureka-server 依赖 完善启动类 编写配置⽂件 启动服务 服务注册 引⼊ eureka-client 依赖 完善配置⽂件 启动服务 服务发现 引⼊依赖 完善配置⽂件 远程调⽤ 启动…

昇思25天学习打卡营第2天|张量Tensor

一、张量的定义&#xff1a; 张量是一种特殊的数据结构&#xff0c;与数组和矩阵非常相似。张量&#xff08;Tensor&#xff09;是MindSpore网络运算中的基本数据结构&#xff08;也是所有深度学习模型的基础数据结构&#xff09;&#xff0c;下面将主要介绍张量和稀疏张量的属…

企业中订单超时关闭是怎么做的?我说用延迟消息,面试官让我回去等消息?

文章目录 背景时序图方案对比方案一 被动关闭方案二 定时关闭方案三 Rocket MQ延迟消息 总结 背景 订单超时未支付是电商中的一个核心场景&#xff0c;当用户创建订单后&#xff0c;超过一定时间没有支付&#xff0c;平台需要及时将该订单关闭。需要关闭的主要原因有以下几个&…

【database1】mysql:DDL/DML/DQL,外键约束/多表/子查询,事务/连接池

文章目录 1.mysql安装&#xff1a;存储&#xff1a;集合&#xff08;内存&#xff1a;临时&#xff09;&#xff0c;IO流&#xff08;硬盘&#xff1a;持久化&#xff09;1.1 服务端&#xff1a;双击mysql-installer-community-5.6.22.0.msi1.2 客户端&#xff1a;命令行输入my…

RTSP协议分析与安全实践

RTSP协议&#xff0c;全称实时流协议(Real Time Streaming Protocol)&#xff0c;前文已经简单介绍了RTSP相关协议&#xff1b; RTSP和RTP(RTCP) 这里再提一下RTSP和RTP/RTCP、RSVP的关系&#xff1b;如图&#xff1a; RTSP和HTTP 相似性&#xff1a;RTSP和HTTP协议都使用纯…

Android,RPC原理,C语言实现Binder跨进程通信Demo

RPC原理图 Binder C语言层的Demo演示 新建目录 把两个文件拷贝到我们的Demo下面 1.binder_server.c #include <stdio.h> #include <stdlib.h> #include <errno.h> #include <linux/types.h> #include <stdbool.h> #include <string.h> #…

多路h265监控录放开发-(12)完成全部开始录制和全部停止录制代码

xviewer.h 新增 public: void StartRecord();//126 开始全部摄像头录制 void StopRecord();//126 停止全部摄像头录制 xviewer.cpp 新增 //视频录制 static vector<XCameraRecord*> records;//126void XViewer::StartRecord() //开始全部摄像头录制 126 {StopRecord…

基于JSP的“塞纳河畔左岸”的咖啡馆管理系统

开头语&#xff1a; 塞纳河畔左岸的咖啡&#xff0c;我手一杯品尝的你美~ 哎哟&#xff0c;不错哦&#xff01;我们今天来介绍一下咖啡馆管理系统&#xff01; 你好呀&#xff0c;我是计算机学长猫哥&#xff01;如果你对咖啡馆管理系统感兴趣或有相关需求&#xff0c;欢迎联…