AI 大模型企业应用实战(10)-LLMs和Chat Models

1 模型

来看两种不同类型的模型--LLM 和聊天模型。然后,它将介绍如何使用提示模板来格式化这些模型的输入,以及如何使用输出解析器来处理输出。

LangChain 中的语言模型有两种类型:

1.1 Chat Models

聊天模型通常由 LLM 支持,但专门针对会话进行了调整。提供者 API 使用与纯文本补全模型不同的接口。它们的输入不是单个字符串,而是聊天信息列表,输出则是一条人工智能信息。

GPT-4 和 Anthropic 的 Claude-2 都是作为聊天模型实现的。

1.2 LLM

LangChain 中的 LLM 指的是纯文本补全模型。它们封装的 API 将字符串提示作为输入,并输出字符串完成。OpenAI 的 GPT-3 就是作为 LLM 实现的。

这两种 API 类型具有不同的输入和输出模式。并非所有模型都一样。不同的模型有不同的最佳提示策略。如:

  • Anthropic 模型最适合使用 XML
  • OpenAI 的模型最适合使用 JSON

设计应用程序时牢记这点。示例将使用聊天模型,并提供几种选择:使用 Anthropic 或 OpenAI 等 API,或通过 Ollama 使用本地开源模型。

2 实例

OpenAI与ChatOpenAI

#调用chatmodels,以openai为例from langchain.chat_models import ChatOpenAI
from langchain.schema.messages import HumanMessage,AIMessage
import os
api_base = os.getenv("OPENAI_PROXY")
api_key = os.getenv("OPENAI_API_KEY")chat = ChatOpenAI(model="gpt-3.5-turbo",temperature=0,openai_api_key = api_key,openai_api_base = api_base)messages = [AIMessage(role="system",content="你好,我是tomie!"),HumanMessage(role="user",content="你好tomie,我是狗剩!"),AIMessage(role="system",content="认识你很高兴!"),HumanMessage(role="user",content="你知道我叫什么吗?")
]response = chat.invoke(messages)
print(response)#print(chat.predict("你好"))

3 流式调用

为啥要流式输出呢?

大模型都是一个个字打出来,免得让你觉得他每次神经网络计算太慢了,让你感觉他一直在持续输出。

#LLM类大模型的流式输出方法from langchain.llms import OpenAI
import os
api_base = os.getenv("OPENAI_PROXY")
api_key = os.getenv("OPENAI_API_KEY")#构造一个llm
llm = OpenAI(model = "gpt-3.5-turbo-instruct",temperature=0,openai_api_key = api_key,openai_api_base = api_base,max_tokens=512,
)for chunk in llm.stream("写一首关于秋天的诗歌"):print(chunk,end="",flush=False)

所以,token 就很重要了。

4 追踪Token的使用

#LLM的toekn追踪
from langchain.llms import OpenAI
from langchain.callbacks import get_openai_callback
import os
api_base = os.getenv("OPENAI_PROXY")
api_key = os.getenv("OPENAI_API_KEY")#构造一个llm
llm = OpenAI(model = "gpt-3.5-turbo-instruct",temperature=0,openai_api_key = api_key,openai_api_base = api_base,max_tokens=512,
)with get_openai_callback() as cb:result = llm.invoke("给我讲一个笑话")print(result)print(cb)
#chatmodels的token追踪
from langchain.chat_models import ChatOpenAI
from langchain.callbacks import get_openai_callback
import os
api_base = os.getenv("OPENAI_PROXY")
api_key = os.getenv("OPENAI_API_KEY")llm = ChatOpenAI(model = "gpt-4",temperature=0,openai_api_key = api_key,openai_api_base = api_base,max_tokens=512,
)with get_openai_callback() as cb:result = llm.invoke("给我讲一个笑话")print(result)print(cb)

5 自定义输出

  • 输出函数参数
  • 输出json
  • 输出List
  • 输出日期

讲笑话机器人:希望每次根据指令,可以输出一个这样的笑话(小明是怎么死的?笨死的)

from langchain.llms import  OpenAI
from langchain.output_parsers import PydanticOutputParser
from langchain.prompts import PromptTemplate
from langchain.pydantic_v1 import BaseModel,Field,validator
from typing import  List
import os
api_base = os.getenv("OPENAI_PROXY")
api_key = os.getenv("OPENAI_API_KEY")#构造LLM
model = OpenAI(model = "gpt-3.5-turbo-instruct",temperature=0,openai_api_key = api_key,openai_api_base = api_base,
)#定义个数据模型,用来描述最终的实例结构
class Joke(BaseModel):setup:str = Field(description="设置笑话的问题")# 笑点punchline:str = Field(description="回答笑话的答案")#验证问题是否符合要求@validator("setup")def question_mark(cls,field):if field[-1] != "?":raise ValueError("不符合预期的问题格式!")return field#将Joke数据模型传入
parser = PydanticOutputParser(pydantic_object=Joke)prompt = PromptTemplate(template = "回答用户的输入.\n{format_instructions}\n{query}\n",input_variables = ["query"],partial_variables = {"format_instructions":parser.get_format_instructions()}
)prompt_and_model = prompt | model
out_put = prompt_and_model.invoke({"query":"给我讲一个笑话"})
print("out_put:",out_put)
parser.invoke(out_put)

LLM的输出格式化成python list形式,类似['a','b','c']

from langchain.output_parsers import  CommaSeparatedListOutputParser
from langchain.prompts import  PromptTemplate
from langchain.llms import OpenAI
import os
api_base = os.getenv("OPENAI_PROXY")
api_key = os.getenv("OPENAI_API_KEY")#构造LLM
model = OpenAI(model = "gpt-3.5-turbo-instruct",temperature=0,openai_api_key = api_key,openai_api_base = api_base,
)parser = CommaSeparatedListOutputParser()prompt = PromptTemplate(template = "列出5个{subject}.\n{format_instructions}",input_variables = ["subject"],partial_variables = {"format_instructions":parser.get_format_instructions()}
)_input = prompt.format(subject="常见的小狗的名字")
output = model(_input)
print(output)
#格式化
parser.parse(output)

关注我,紧跟本系列专栏文章,咱们下篇再续!

作者简介:魔都架构师,多家大厂后端一线研发经验,在分布式系统设计、数据平台架构和AI应用开发等领域都有丰富实践经验。

各大技术社区头部专家博主。具有丰富的引领团队经验,深厚业务架构和解决方案的积累。

负责:

  • 中央/分销预订系统性能优化

  • 活动&券等营销中台建设

  • 交易平台及数据中台等架构和开发设计

  • 车联网核心平台-物联网连接平台、大数据平台架构设计及优化

  • LLM应用开发

    目前主攻降低软件复杂性设计、构建高可用系统方向。

参考:

  • 编程严选网

    本文由博客一文多发平台 OpenWrite 发布!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/32949.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

正确实现 QThread 的方法(附示例)

这篇技术博客探讨了在 Qt 框架中正确实现 QThread 类的方法。传统 Qt 文档建议继承 QThread 类并重写其 run 方法,这虽然在某些情况下可行,但并不是推荐的最佳实践。以下内容将探讨这种方法的利弊,并提供一个更好的实现 QThread 的示例。 原始示例:继承 QThread 并重写 ru…

FFmpeg源码:ff_ctz / ff_ctz_c函数分析

一、ff_ctz函数的作用 ff_ctz定义在FFmpeg源码目录的libavutil/intmath.h 下: #ifndef ff_ctz #define ff_ctz ff_ctz_c /*** Trailing zero bit count.** param v input value. If v is 0, the result is undefined.* return the number of trailing 0-bits*/…

从零开始搭建一个酷炫的个人博客

效果图 一、搭建网站 git和hexo准备 注册GitHub本地安装Git绑定GitHub并提交文件安装npm和hexo,并绑定github上的仓库注意:上述教程都是Windows系统,Mac系统会更简单! 域名准备 购买域名,买的是腾讯云域名&#xf…

OpenCV 棋盘格角点探测

文章目录 一、简介二、代码实现三、实现效果参考文献一、简介 这篇文章中(https://mp.weixin.qq.com/s?__biz=Mzg5MzE2NzgwOA==&mid=2247483686)探讨了关于OpenCV中棋盘格角点探测算法的整个过程,以及所存在的缺点限制。总的来说,(1)在opencv中为了兼顾计算速度,因…

@PostConstruct 注解的方法用于资源的初始化

PostConstruct 是 Java EE 5 引入的一个注解,主要用于依赖注入完成之后,需要执行的方法上。这个注解的方法会在依赖注入完成后自动被容器(如 EJB 容器或 Spring 容器)调用,并且只会被调用一次。 PostConstruct 注解的…

Kubernetes排错(十)-处理容器数据磁盘被写满

容器数据磁盘被写满造成的危害: 不能创建 Pod (一直 ContainerCreating)不能删除 Pod (一直 Terminating)无法 exec 到容器 如何判断是否被写满? 容器数据目录大多会单独挂数据盘,路径一般是 /var/lib/docker,也可能是 /data/docker 或 /o…

工程师 - status和state的区别

"Status"和 "state"是相关的概念,但有不同的含义,尤其是在计算、系统和编程方面: 1. Status: * 定义: 状态是指系统、进程或实体在某一特定时间点的当前状态或情况。 * 使用方法: 它通…

档案数字化建设花费主要在哪里

在档案数字化建设中,主要花费包括以下几个方面: 1. 技术设备和软件:包括购买和维护服务器、计算机、扫描仪、存储设备等硬件设备,以及购买和使用专久智能档案数字化软件和系统。 2. 人力资源:数字化建设需要专业的技术…

虚拟现实环境下的远程教育和智能评估系统(十二)

接下来,把实时注视点位置、语音文本知识点、帧知识点区域进行匹配; 首先,第一步是匹配语音文本知识点和帧知识点区域,我们知道教师所说的每句话对应的知识点,然后寻找当前时间段内,知识点对应的ppt中的区域…

数据仓库之雪花模型

雪花模型是数据仓库设计中使用的一种规范化模式。它是星型模型的一种扩展,通过进一步规范化维度表来减少冗余和节省存储空间。下面详细介绍雪花模型的各个方面: 雪花模型概述 雪花模型的名称源于其复杂的结构图形,类似于雪花的形状。在这种…

推荐3款自动爬虫神器,再也不用手撸代码了

网络爬虫是一种常见的数据采集技术,你可以从网页、 APP上抓取任何想要的公开数据,当然需要在合法前提下。 爬虫使用场景也很多,比如: 搜索引擎机器人爬行网站,分析其内容,然后对其进行排名,比…

java:spring-security的简单例子

【pom.xml】 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId><version>2.3.12.RELEASE</version> </dependency> <dependency><groupId>org.springf…

嘉楠勘智CanMV-K230的大小核如何操作

摘要&#xff1a;嘉楠勘智CanMV-K230的帮助文档、例子模型说明中&#xff0c;一直在提“大核&#xff0c;小核”&#xff0c;还提到将文件复制到小核并解压&#xff0c;然后在大核中操作&#xff0c;本文介绍一下这两个“核”如何操作。 所需的硬件&#xff1a;CanMV-K230-V1.1…

大数据复习练习

大数据复习练习题 填空题简答题简单分析题程序设计题程序设计题 填空题 (数据)过观察、实验或计算得出的结果。&#xff08;消息&#xff09;是较为宏观的概念&#xff0c;它是由数据的有序排列组合而成。大数据的数据类型包括&#xff08;结构化数据&#xff09;和&#xff0…

<router-view />标签的理解

< router-view />标签的理解 < router-view />用来承载当前级别下的子集路由的一个视图标签。显示当前路由级别下一级的页面。 App.vue是根组件&#xff0c;在它的标签里使用&#xff0c;而且配置好路由的情况下&#xff0c;就能在浏览器上显示子组件的效果。 如…

Python题目

实例 3.1 兔子繁殖问题&#xff08;斐波那契数列&#xff09; 兔子从出生后的第三个月开始&#xff0c;每月都会生一对兔子&#xff0c;小兔子成长到第三个月后也会生一对独自。初始有一对兔子&#xff0c;假如兔子都不死&#xff0c;那么计算并输出1-n个月兔子的数量 n int…

皇河将相董事长程灯虎出席第二十四届世纪大采风并获奖

仲夏时节,西子湖畔。第二十四届世纪大采风品牌人物年度盛典于6月16日至17日在杭州东方文化园隆重举行。本届盛典由亿央网、《华夏英才》电视栏目联合多家媒体共同主办,中世采文化发展集团承办,意尔康股份有限公司、宸咏集团协办,汇聚了来自全国政、商、产、学、研、媒等各界代表…

Eureka 服务注册与发现

目录 前言 注册中心 CAP 理论 常⻅的注册中心 CAP理论对比 Eureka 搭建 Eureka Server 引⼊ eureka-server 依赖 完善启动类 编写配置⽂件 启动服务 服务注册 引⼊ eureka-client 依赖 完善配置⽂件 启动服务 服务发现 引⼊依赖 完善配置⽂件 远程调⽤ 启动…

def __init__ python特殊方法(也称为魔法方法或双下划线方法)

这些特殊方法&#xff08;也称为魔法方法或双下划线方法&#xff09;是由 Python 的数据模型&#xff08;data model&#xff09;规定的&#xff0c;用于定义对象的行为。它们通常用于实现内置操作和函数的行为&#xff0c;如算术运算、比较操作、容器类型&#xff08;如列表和…

使用 devtool 本地调试 nodejs

安装 # 全局安装 $ npm install devtool -g # 或临时安装 $ npx devtool [file] [opts]用法 Usage:devtool [入口文件] [opts]Options:--watch, -w enable file watching (for development) # 动态检测文件变更&#xff0c;不用每次手动重启--quit, -q …