[论文阅读]Enhanced Membership Inference Attacks against Machine Learning Models

Enhanced Membership Inference Attacks against Machine Learning Models

针对机器学习模型的增强型成员推理攻击

Enhanced Membership Inference Attacks against Machine Learning Models | Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security

摘要

在本文中,我们提出了一个全面的假设检验框架,该框架不仅使我们能够以一致的方式正式表达之前的工作,而且还设计了新的成员推理攻击,该攻击使用参考模型来实现任何(假阳性率)误差的显着更高的功效(真阳性率)。更重要的是,我们解释了为什么不同的攻击执行方式不同。我们提供了一个不可区分游戏的模板,并提供了游戏不同实例的攻击成功率的解释。我们讨论了问题制定过程中出现的攻击者的各种不确定性,并展示了我们的方法如何尝试将攻击不确定性降至最低,直到训练集中是否存在数据点的一点秘密。我们对所有类型的攻击进行了差异分析,解释了它们之间的差距,并揭示了导致数据点容易受到攻击的原因(因为原因因记忆的粒度不同而不同,从过度拟合到条件记忆)。我们的审计框架作为 Privacy Meter 软件工具的一部分公开访问。

攻击框架

目标是设计一个框架,能够在黑盒设置(其中只有模型输出)中审计机器学习模型关于特定记录的隐私丢失。该框架有三个要素:(i) 作为评估设置的推理游戏;(ii) 衡量隐私风险的不可区分性指标,以及 (iii) 将成员推理攻击构建为假设检验。我们框架背后的隐私概念主要基于差分隐私,并且该框架的多个部分是针对机器学习算法的现有推理攻击的泛化。在构建和评估成员资格推理攻击时,我们介绍了游戏的重要设计选择,以便对不同类型的隐私丢失进行更精确的隐私审计。

方法概述

论文提出了一种基于假设检验的成员推断攻击框架,核心在于优化攻击的成功率和准确性。具体而言,该框架包括以下几个关键步骤:

1. 推断游戏(Inference Game)
  • 攻击者与挑战者的对抗:设计了一个挑战者与攻击者之间的推断游戏。在游戏中,挑战者随机选择某个数据点,然后构造两个世界:一个包含目标数据点(成员),另一个不包含(非成员)。攻击者通过观察模型输出来判断数据点是否属于训练集。
  • 不同的游戏设置:作者构建了不同类型的推断游戏,以评估模型在“平均数据点”或“特定数据点”上的隐私泄露。这样可以分别评估模型对一般数据的隐私风险和对特殊数据点的隐私风险。
2. 不可区分性度量(Indistinguishability Metric)
  • 定义隐私风险:作者使用不可区分性度量(类似于差分隐私中的概念),定义了模型对特定数据点的隐私泄露程度。隐私泄露被定义为模型是否能够被攻击者区分出是否包含特定数据点。
  • 假设检验:攻击者的目标是通过假设检验来区分两个假设,即数据点是成员或非成员。通过调整检验的阈值,可以控制假阳性率(FPR)和真阳性率(TPR),从而获得更强的攻击策略。
3. 攻击策略的优化
  • 基于损失的攻击:论文聚焦于基于损失值的攻击方法,通过比较模型对特定数据点的损失值来推断其成员关系。
  • 改进的攻击方法:论文提出了几种新的攻击方法,包括基于模型依赖和样本依赖的攻击,这些方法能够更好地利用模型和数据点的信息,以提高攻击的准确性。

具体攻击方法

论文设计了四种不同的攻击策略,每种策略逐步增加对模型和数据点信息的依赖,以增强攻击效果:

1. Attack S: 基于影子模型的攻击
  • 使用影子模型方法,训练多个与目标模型类似的模型(称为影子模型)来估计目标模型的行为。通过影子模型的损失分布来设定攻击阈值。
  • 优点是计算效率高,但无法针对特定模型和数据点进行优化。
2. Attack P: 基于模型的攻击
  • 针对特定模型计算损失阈值,而不是使用通用的影子模型。该方法利用了目标模型的特定信息,提高了攻击的准确性。
  • 该方法不需要训练多个影子模型,而是直接对目标模型使用随机数据点估计分布,减少了计算成本。
3. Attack R: 基于样本的攻击
  • 针对目标数据点使用参考模型生成样本特定的损失阈值。通过在多个参考模型上测试目标数据点的损失值分布来确定其阈值。
  • 这种方法对特定数据点的隐私泄露进行了细粒度分析,更准确地识别出了“易受攻击”的数据点。
4. Attack D: 基于自蒸馏的攻击
  • 结合模型和数据点的信息,通过一种称为自蒸馏的技术来生成更接近目标模型的参考模型。这些参考模型对目标模型的训练集进行了近似重构,从而进一步增强了攻击的效果。
  • 该攻击方法比前述策略更强,能够更精确地判断特定数据点的成员关系。

通过实验评估了不同攻击方法的性能,以下是主要的实验发现:

  1. 攻击成功率对比:在不同的假阳性率下,Attack D的攻击效果最佳,能够达到较高的真阳性率,尤其在低假阳性率的情况下表现突出。
  2. 特定数据点的易受攻击性:不同攻击方法在检测特定“易受攻击”数据点时表现出差异。Attack R和Attack D在识别这些数据点时具有更高的成功率,表明它们能够更有效地捕捉模型对特定数据点的记忆性。
  3. 攻击阈值的依赖性:实验结果显示,随着攻击方法逐步增加对模型和数据点信息的依赖,攻击阈值的精确性也随之提高,从而形成更尖锐的攻击信号,有助于提高预测准确性。

该论文通过提出的增强型成员推断攻击框架,有效地提升了成员推断攻击的准确性,尤其在特定数据点上的隐私泄露评估更加细致。作者的工作展示了模型对特定数据点的记忆性如何影响隐私风险,并提供了评估模型隐私风险的新方法。

未来的研究方向包括进一步优化基于自蒸馏的攻击方法,以降低计算成本,并探索更多防御策略以抵御这些增强的成员推断攻击。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/60029.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【架构论文-2】架构设计中存在的问题和改进方向

一、性能优化相关 当前情况 在高负载情况下,系统的响应时间出现了一定程度的延迟。特别是在业务高峰期,大量并发请求导致部分关键业务模块的处理效率降低,影响了用户体验。改进方向 计划引入性能分析工具对系统进行全面的性能剖析&#xff0…

嵌入式硬件电子电路设计(三)电源电路之负电源

引言:在对信号线性度放大要求非常高的应用需要使用双电源运放,比如高精度测量仪器、仪表等;那么就需要给双电源运放提供正负电源。 目录 负电源电路原理 负电源的作用 如何产生负电源 负电源能作功吗? 地的理解 负电压产生电路 BUCK电…

GB/T 28046.4-2011 道路车辆 电气及电子设备的环境条件和试验 第4部分:气候负荷(6)

写在前面 本系列文章主要讲解道路车辆电气及电子设备的环境条件和试验GB/T 28046标准的相关知识,希望能帮助更多的同学认识和了解GB/T 28046标准。 若有相关问题,欢迎评论沟通,共同进步。(*^▽^*) 第4部分:气候负荷 5. 试验和要求 5.8 流动混合气体腐蚀试验 5.8.1 目的…

QT中 update()函数无法实时调用 paintEvent

QT中 update()函数无法实时调用 paintEvent! 在QT中,update()函数用于标记一个窗口区域为“需要重绘”。当调用update()后,QT会在合适的时候调用paintEvent()来重绘这个区域。然而,update()不会立即调用paintEvent(),…

测试概念以及测试bug

关于测试的概念 什么是需求? 需求分为用户需求和软件需求。 软件需求可以作为开发和测试工作的依据,而用户需求不一定是合理的,这里的不合理有很多的角度:技术角度上,市场需求上,投入成本和收益比噔噔。…

Jenkins配置步骤

安装 Jenkins 1. 安装 Java Jenkins 需要 Java 运行环境。你可以安装 OpenJDK 或 Oracle JDK。 使用 OpenJDK: sudo apt update sudo apt install openjdk-11-jdk验证 Java 安装: java -version2. 安装 Jenkins 添加 Jenkins 仓库: wget -q -O - https://pkg.jenkins.io…

【图论】图的C++实现代码

在这个例程中我们用类实现了节点、&#xff08;无向图&#xff09;连边、无向图&#xff0c;实现了节点度的计算、无向图聚类系数计算、度分布统计、无向图的Dijkstra算法&#xff08;已知起止点计算最短路的算法&#xff09; #include <iostream> #include<vector&g…

Java:二维数组

目录 1. 二维数组的基础格式 1.1 二维数组变量的创建 —— 3种形式 1.2 二维数组的初始化 \1 动态初始化 \2 静态初始化 2. 二维数组的大小 和 内存分配 3. 二维数组的不规则初始化 4. 遍历二维数组 4.1 for循环 ​编辑 4.2 for-each循环 5. 二维数组 与 方法 5.1…

Code::Blocks 24.10 全中文优化完整版

Code::Blocks&#xff08;或者叫做 CodeBlocks&#xff09;是一款开放源代码、跨平台的集成开发环境&#xff08;IDE&#xff09;&#xff0c;通过配置不同的编程语言编译器&#xff0c;可以用于多种编程语言程序开发。 网上有很多文章介绍 Code::Blocks 的安装&#xff0c;通…

分组校验在Spring中的应用详解

目录 前言1. 什么是分组校验2. 分组校验的基本原理3. 分组校验的实现步骤3.1 定义分组接口3.2 在校验项中指定分组3.3 校验时指定要校验的分组3.4 默认分组和分组的继承 4. 分组校验的优势和适用场景4.1 优势4.2 适用场景 5. 常见问题与解决方案5.1 校验未生效5.2 无法识别默认…

优化前端开发中的提示语设计基本原则

文章目录 一致1、同一对象&#xff0c;指称一致2、同一状态&#xff0c;描述一致3、同一行为&#xff0c;提示一致 简洁1、用词简短 条理1、上下呼应2、主次分明 亲和1、化“难”为易2、“礼”字当先3、正向表达 灵动1、用词多变2、远离平淡 契合1、身份契合2、产品契合 示例1、…

C++知识点总结(56):数学专题

数学专题 一、进制转换类1. 模板1.1 十转 x x x1.2 x x x 转十 2. 例题 二、公式推导类1. 一元二次方程解2. 例题2.1 【模板】怪物同笼2.2 K K K 的倍数 三、枚举例题1. 二次方程2. 【模板】立方体体积3. 街头篮球 一、进制转换类 1. 模板 1.1 十转 x x x while(n){num[…

【C++滑动窗口】1297. 子串的最大出现次数|1748

本文涉及的基础知识点 C算法&#xff1a;滑动窗口及双指针总结 固定长度滑动窗口 LeetCode1297. 子串的最大出现次数 给你一个字符串 s &#xff0c;请你返回满足以下条件且出现次数最大的 任意 子串的出现次数&#xff1a; 子串中不同字母的数目必须小于等于 maxLetters 。…

【C++练习】使用海伦公式计算三角形面积

编写并调试一个计算三角形面积的程序 要求&#xff1a; 使用海伦公式&#xff08;Herons Formula&#xff09;来计算三角形的面积。程序需要从用户那里输入三角形的三边长&#xff08;实数类型&#xff09;。输出计算得到的三角形面积&#xff0c;结果保留默认精度。提示用户…

Python使用PDF相关组件案例详解

主要对pdfminer.six、pdfplumber、PyMuPDF、PyPDF2、PyPDF4、pdf2image、camelot-py七个PDF相关组件分别详解&#xff0c;具体使用案例演示 1. pdfminer.six pdfminer.six 是一个专门用来从 PDF 中提取文本的库&#xff0c;能够处理复杂的文本布局&#xff0c;适合用于文本解析…

计算机网络:网络层 —— 移动 IP 技术

文章目录 移动性对因特网应用的影响移动 IP 相关基本概念移动IP技术的基本工作原理代理发现与注册固定主机向移动主机发送IP数据报移动主机向固定主机发送IP数据报同址转交地址方式三角形路由问题 移动性对因特网应用的影响 我们列举如下三个应用场景说明移动性对因特网应用的…

鸿蒙多线程开发——Worker多线程

1、概 述 1.1、基本介绍 Worker主要作用是为应用程序提供一个多线程的运行环境&#xff0c;可满足应用程序在执行过程中与主线程分离&#xff0c;在后台线程中运行一个脚本进行耗时操作&#xff0c;极大避免类似于计算密集型或高延迟的任务阻塞主线程的运行。 创建Worker的线…

【大数据学习 | kafka】消费者的分区分配规则

1. 概述 上面我们提到过&#xff0c;消费者有的时候会少于或者多于分区的个数&#xff0c;那么如果消费者少了有的消费者要消费多个分区的数据&#xff0c;如果消费者多了&#xff0c;有的消费者就可能没有分区的数据消费。 那么这个关系是如何分配的呢&#xff1f; 现在我们…

Python接口自动化测试自学指南(项目实战)

&#x1f345; 点击文末小卡片 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 接口自动化测试是指通过编写程序来模拟用户的行为&#xff0c;对接口进行自动化测试。Python是一种流行的编程语言&#xff0c;它在接口自动化测试中得到了广…

【Python进阶】Python网络协议与套接字编程:构建客户端和服务器

1、网络通信基础与网络协议 1.1 网络通信模型概述 网络通信是信息时代基石&#xff0c;它如同现实世界中的邮递系统&#xff0c;将数据从一处传递到另一处。其中&#xff0c;OSI七层模型与TCP/IP四层或五层模型是理解和构建网络通信的基础。 1.1.1 OSI七层模型与TCP/IP四层/…