【大数据学习 | kafka】消费者的分区分配规则

1. 概述

上面我们提到过,消费者有的时候会少于或者多于分区的个数,那么如果消费者少了有的消费者要消费多个分区的数据,如果消费者多了,有的消费者就可能没有分区的数据消费。

那么这个关系是如何分配的呢?

现在我们知道kafka中存在一个coordinator可以管理这么一堆消费者,它可以帮助一个组内的所有消费者进行分区的分配和对应。

通过coordinator进行协调

这个分配规则分为以下几种。

2. range分配器

按照范围形式进行分配分区数量

# 为了演示分区的分配效果我们创建一个topic_d,设定为7个分区
[hexuan@hadoop106 bin]$ kafka-topics.sh --bootstrap-server hadoop106:9092 --create --topic topic_f --partitions 7 --replication-factor 2
consumer.subscribe(topics, new ConsumerRebalanceListener() {@Overridepublic void onPartitionsRevoked(Collection<TopicPartition> partitions) {}@Overridepublic void onPartitionsAssigned(Collection<TopicPartition> partitions) {}});

然后改版订阅代码,subscribe订阅信息的时候展示出来分区的对应映射关系,这个只是一个监控的作用没有其他的代码影响ConsumerRebalanceListener增加监视。

其中存在两个比较直观的方法

onPartitionsRevoked回收的分区。

onPartitionsAssigned分配的分区。

能够直观展示在分区分配的对应关系

其中我们需要知道两个比较重要的参数。

参数解释
offsets.topic.num.partitions__consumer_offset这个topic的分区数量默认50个
heartbeat.interval.ms消费者和协调器的心跳时间 默认3s
session.timeout.ms消费者断开的超时时间 默认45s,最小不能小于6000
partition.assignment.strategy设定分区分配策略

也就是说我们想要直观查看消费者变化后的映射对应关系需要停止消费者以后45s才可以,这个在代码中我们需要人为设定小点,更加快速查看变化

代码测试原理

首先设定topic_d的分区为7个,然后启动一个组内的两个消费者,可以看到他们的分配关系在onPartitionsAssigned这个方法中打印出来,同时我们关闭一个消费者,可以看到onPartitionsRevoked可以展示回收的分区,onPartitionsAssigned以及这个方法中分配的分区

整体代码如下:

package com.hainiu.kafka.consumer;/*** ClassName : rangeAssigned* Package : com.hainiu.kafka.consumer* Description** @Author HeXua* @Create 2024/11/4 22:04* Version 1.0*/
import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;import java.time.Duration;
import java.util.*;public class rangeAssigned {public static void main(String[] args) {Properties pro = new Properties();pro.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop106:9092");pro.put(ConsumerConfig.GROUP_ID_CONFIG,"hainiu_group2");pro.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());pro.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());pro.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG,RangeAssignor.class.getName());//设定分区分配策略为rangepro.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG,6000);//设定consumer断开超时时间最小不能小于6sKafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(pro);List<String> topics = Arrays.asList("topic_f");consumer.subscribe(topics, new ConsumerRebalanceListener() {@Overridepublic void onPartitionsRevoked(Collection<TopicPartition> partitions) {for (TopicPartition partition : partitions) {System.out.println("revoke-->"+partition.topic()+"-->"+partition.partition());}}@Overridepublic void onPartitionsAssigned(Collection<TopicPartition> partitions) {for (TopicPartition partition : partitions) {System.out.println("assign-->"+partition.topic()+"-->"+partition.partition());}}});while (true){ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(1));Iterator<ConsumerRecord<String, String>> it = records.iterator();while(it.hasNext()){ConsumerRecord<String, String> record = it.next();System.out.println(record.topic()+"->"+record.partition()+"->"+ record.offset()+"->"+record.key()+"->"+record.value());}}}
}

我们执行两个实例,两个实例代表两个消费者位于同一个组中,那么两个消费者的分配关系按照,范围进行分割

consumer0[0,1,2,3] consumer1[4,5,6]

执行第一个实例的时候,无需回收,并且七个分区都分配给第一个消费者实例。

执行第二个消费者的时候,需要对第一个消费者实例进行回收分区:

revoke-->topic_f-->0
revoke-->topic_f-->1
revoke-->topic_f-->2
revoke-->topic_f-->3
revoke-->topic_f-->4
revoke-->topic_f-->5
revoke-->topic_f-->6

然后由于一个消费者组中有两个消费者实例,则将分区重新分配个两个消费者实例。

因为coordinator的分配规则基于eager协议,这个协议的规则就是当分配关系发生变化的时候要全部回收然后打乱重分。

consumer1分配分区情况:

assign-->topic_f-->0
assign-->topic_f-->1
assign-->topic_f-->2
assign-->topic_f-->3

consumer2分配分区情况:

assign-->topic_f-->4
assign-->topic_f-->5
assign-->topic_f-->6

缺点:

这个协议只是按照范围形式进行重新分配分区,会造成单个消费者的压力过大问题,多个topic就会不均匀。

一个消费者组消费多个topic时可能会造成数据倾斜。

比如该消费者组有两个消费者:consumer1和consumer2。该消费者组消费两个topic分区:topic_1, topic_2,且假设两个topic都有7个分区,那么range分配规则可能会这么干:

consumer1分配topic_1-0,topic_1-1,topic_1-2, topic_1-3,topic_2-0,topic_2-1,topic_2-2, topic_2-3。

consumer3分配topic_1-4,topic_1-5,topic_1-6,topic_2-4,topic_2-5,topic_2-6。

consumer1要消费8个分区的数据,而consumer2要消费6个分区的数据,

当一个消费者出现消费多个topic主题的时候就可能出现这种数据倾斜的情况。

3. roundRobin轮训分配策略

轮训形式分配分区,一个消费者一个分区

整体代码如下:

pro.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG,RoundRobinAssignor.class.getName());

设定分配规则为roundRobin的

启动一个的效果:

assign-->topic_f-->0
assign-->topic_f-->1
assign-->topic_f-->2
assign-->topic_f-->3
assign-->topic_f-->4
assign-->topic_f-->5
assign-->topic_f-->6

启动两个应用

第一个消费者consumer实例:

回收所有的七个分区:

revoke-->topic_f-->0
revoke-->topic_f-->1
revoke-->topic_f-->2
revoke-->topic_f-->3
revoke-->topic_f-->4
revoke-->topic_f-->5
revoke-->topic_f-->6

再被分配到3个分区:

assign-->topic_f-->1
assign-->topic_f-->3
assign-->topic_f-->5

第二个消费者consumer2实例:

assign-->topic_f-->0
assign-->topic_f-->2
assign-->topic_f-->4
assign-->topic_f-->6

优点:

同range方式相比,在多个topic的情况下,可以保证多个consumer负载均衡

分配规则如上图,一人一个轮训形式

consumer0 [0 2 4 6 1 3 5]

consumer1 [1 3 5 0 2 4 6]

缺点

不管是range的还是roundRobin的分配方式都是全量收回打乱重新分配,这样的效率太低,所以我们使用下面的粘性分区策略。

4. sticky粘性分区

粘性分区它的重新分区原理和原来的roundRobin的分区方式差不多,但是又不相同,主要是分区逻辑一样,但是重新分配分区的时候优先保留原分区,然后重新分配其他分区,从而不需要全部打乱重分,减少重新分配分区消耗

第二次启动

第三次

分区分配方式一样,但是如果重新分配的话会有很多原来分区的预留,重新分配新的分区

# 为了演示效果再次创建新的topic topic_g 七个分区
kafka-topics.sh --bootstrap-server hadoop106:9092 --topic topic_g --create --partitions 7 --replication-factor 2

然后让复制代码,修改订阅两个topic

  pro.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG,StickyAssignor.class.getName());
//修改为粘性分区List<String> topics = Arrays.asList("topic_f","topic_g");
//订阅两个topic

并且运行应用实例分别运行1 ,2 ,3 多种个数的实例

执行第一个消费者实例consumer1,无需回收,分配14个分区(topic_f和topic_g都是七个分区)

assign-->topic_f-->0
assign-->topic_f-->1
assign-->topic_f-->2
assign-->topic_f-->3
assign-->topic_f-->4
assign-->topic_f-->5
assign-->topic_f-->6
assign-->topic_g-->0
assign-->topic_g-->1
assign-->topic_g-->2
assign-->topic_g-->3
assign-->topic_g-->4
assign-->topic_g-->5
assign-->topic_g-->6

执行第二个消费者实例consumer2时:

consumer1:

回收了14个分区:

revoke-->topic_f-->0
revoke-->topic_f-->1
revoke-->topic_f-->2
revoke-->topic_f-->3
revoke-->topic_f-->4
revoke-->topic_f-->5
revoke-->topic_f-->6
revoke-->topic_g-->0
revoke-->topic_g-->1
revoke-->topic_g-->2
revoke-->topic_g-->3
revoke-->topic_g-->4
revoke-->topic_g-->5
revoke-->topic_g-->6

优先保留原来分区,所以分配七个分区:

assign-->topic_f-->0
assign-->topic_f-->1
assign-->topic_f-->2
assign-->topic_f-->3
assign-->topic_f-->4
assign-->topic_f-->5
assign-->topic_f-->6

consumer2:

分配了七个分区;

assign-->topic_g-->0
assign-->topic_g-->1
assign-->topic_g-->2
assign-->topic_g-->3
assign-->topic_g-->4
assign-->topic_g-->5
assign-->topic_g-->6

执行第三个实例consumer3:

consumer1将会回收七个分区,consumer2将会回收七个分区。

14 / 3 = 4 ---->  4 + 1       4  +  1       4

comsumer1将会被分配:[0, 1, 2, 3, 4]

consumer2将会被分配 : [0, 1, 2, 3, 4]

consumer3将会被分配:[5, 6, 5, 6]

尽量不改变原分区的规则的前提下进行分区分配。

以上三种都基于eager协议,也就是想要重新分配分区一定要将原来的所有分区回收,全部打乱重新,即使保留原来的分区规则,也需要全部都回收分区,这样效率非常低下,最后一种CooperativeSticky分区策略完全打破以上三种的分区关系。

5. CooperativeSticky分区

以粘性为主,但是不全部收回分区,只是将部分需要重新分配的分区重新调配,效率高于以上三种分区策略。

 pro.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG,CooperativeStickyAssignor.class.getName());
//设定分区策略

运行两个实例,查看控制台信息发现:

运行第一个消费者实例:

consumer1:

分配了14个分区:

assign-->topic_f-->0
assign-->topic_f-->1
assign-->topic_f-->2
assign-->topic_f-->3
assign-->topic_f-->4
assign-->topic_f-->5
assign-->topic_f-->6
assign-->topic_g-->0
assign-->topic_g-->1
assign-->topic_g-->2
assign-->topic_g-->3
assign-->topic_g-->4
assign-->topic_g-->5
assign-->topic_g-->6

运行第二个消费者实例:

consumer1:

回收7个分区:与前三种分区规则不同,前三种是分配分区的时候将所有分区全部收回

revoke-->topic_g-->0
revoke-->topic_g-->1
revoke-->topic_g-->2
revoke-->topic_g-->3
revoke-->topic_g-->4
revoke-->topic_g-->5
revoke-->topic_g-->6

详细信息:

	Assigned partitions:                       [topic_f-0, topic_f-1, topic_f-2, topic_f-3, topic_f-4, topic_f-5, topic_f-6]Current owned partitions:                  [topic_f-0, topic_f-1, topic_f-2, topic_f-3, topic_f-4, topic_f-5, topic_f-6]Added partitions (assigned - owned):       []Revoked partitions (owned - assigned):     []

consumer2:

分配七个分区:

assign-->topic_g-->0
assign-->topic_g-->1
assign-->topic_g-->2
assign-->topic_g-->3
assign-->topic_g-->4
assign-->topic_g-->5
assign-->topic_g-->6

详细情况:

	Assigned partitions:                       [topic_g-0, topic_g-1, topic_g-2, topic_g-3, topic_g-4, topic_g-5, topic_g-6]Current owned partitions:                  []Added partitions (assigned - owned):       [topic_g-0, topic_g-1, topic_g-2, topic_g-3, topic_g-4, topic_g-5, topic_g-6]Revoked partitions (owned - assigned):     []

整个分区分配规则和粘性分区策略一致,但是并不需要收回全部分区。

系统默认分区分配规则为:。

range+CooperativeSticky。

范围分区为主,优先粘性并且不急于eager协议。

6. 指定分区消费

在计算处理过程中,有时候我们需要指定一个消费者组消费指定的分区,计算其中的数据,这个时候以上的所有分区策略都不符合我们人为的要求,我们需要指定相应的分区进行消费。

consumer.assign();
//用指定的方式定向消费相应的分区数据

整体代码如下:

package com.hainiu.kafka.consumer;/*** ClassName : rangeAssigned* Package : com.hainiu.kafka.consumer* Description** @Author HeXua* @Create 2024/11/4 22:04* Version 1.0*/
import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;import java.time.Duration;
import java.util.*;public class Assigned {public static void main(String[] args) {Properties pro = new Properties();pro.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop106:9092");pro.put(ConsumerConfig.GROUP_ID_CONFIG,"hainiu_group2");pro.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());pro.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());pro.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG, CooperativeStickyAssignor.class.getName());pro.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG,6000);KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(pro);List<TopicPartition> list = Arrays.asList(new TopicPartition("topic_f", 0),new TopicPartition("topic_g", 0));consumer.assign(list);while (true){ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(1));Iterator<ConsumerRecord<String, String>> it = records.iterator();while(it.hasNext()){ConsumerRecord<String, String> record = it.next();System.out.println(record.topic()+"->"+record.partition()+"->"+ record.offset()+"->"+record.key()+"->"+record.value());}}}
}

我们只消费topic_e的0号分区和topic_d的0号分区

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/60011.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python接口自动化测试自学指南(项目实战)

&#x1f345; 点击文末小卡片 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 接口自动化测试是指通过编写程序来模拟用户的行为&#xff0c;对接口进行自动化测试。Python是一种流行的编程语言&#xff0c;它在接口自动化测试中得到了广…

Redis - 哨兵(Sentinel)

Redis 的主从复制模式下&#xff0c;⼀旦主节点由于故障不能提供服务&#xff0c;需要⼈⼯进⾏主从切换&#xff0c;同时⼤量 的客⼾端需要被通知切换到新的主节点上&#xff0c;对于上了⼀定规模的应⽤来说&#xff0c;这种⽅案是⽆法接受的&#xff0c; 于是Redis从2.8开始提…

24年配置CUDA12.4,Pytorch2.5.1,CUDAnn9.5运行环境

没什么好介绍的&#xff0c;直接说了。 下载 首先打开命令行&#xff0c;输入代码查看显卡最高支持的cuda版本&#xff0c;下载的版本不要高于该版本 nvidia-smi PyTorch 插件这个是PyTorch下载地址&#xff0c;就按照我这么选CUDA版本就选最新的&#xff0c;看好绿框里的CU…

debian系统安装qt的时候 显示xcb相关文件缺失

如果是安装之后的问题 我们可以选择使用ldd的命令查看当前依赖的so那些文件确实 ldd /home/yinsir/Qt/5.15.2/gcc_64/plugins/platforms/libqxcb.so 本人在进行打包的时候 出现则会个报错 ERROR: ldd outputLine: “libxcb-util.so.1 > not found” ERROR: for binary: “/…

找工作就上万码优才,海量技术岗位等你来

已至岁末&#xff0c;不论你将实习&#xff0c;或正在求职&#xff0c;求职平台千千万万&#xff0c;但简历如落叶般无人问津。 是否因未找到理想职位而心生焦虑&#xff1f;别急&#xff0c;万码优才在这里&#xff0c;为你点亮职业之路的明灯&#xff01; 今天给大家推荐一…

⭐SmartControl: Enhancing ControlNet for Handling Rough Visual Conditions

目录 0 Abstract 1 Motivation 2 Related Work 2.1 Text-to-Image Diffusion Model 2.2 Controllable Text-to-Image Generation 2.3 ControlNet 2.4 Control Scale Exploration 3 Method 3.1 Framework 3.2 Control Scale Predictor 3.3 Unaligned Data Constructi…

vue3 + element-plus 的 upload + axios + django 文件上传并保存

之前在网上搜了好多教程&#xff0c;一直没有找到合适自己的&#xff0c;要么只有前端部分没有后端&#xff0c;要么就是写的不是很明白。所以还得靠自己摸索出来后&#xff0c;来此记录一下整个过程。 其实就是不要用默认的 action&#xff0c;要手动实现上传方式 http-reque…

更改Ubuntu22.04锁屏壁纸

更改Ubuntu22.04锁屏壁纸 sudo apt install gnome-shell-extensions gnome-shell-extension-manager安装Gnome Shell 扩展管理器后&#xff0c;打开“扩展管理器”并使用搜索栏找到“锁屏背景”扩展

SDL打开YUV视频

文章目录 问题1&#xff1a;如何控制帧率&#xff1f;问题2&#xff1a;如何触发退出事件&#xff1f;问题3&#xff1a;如何实时调整视频窗口的大小问题4&#xff1a;YUV如何一次读取一帧的数据&#xff1f; 问题1&#xff1a;如何控制帧率&#xff1f; 单独用一个子线程给主线…

SQL server 中 CROSS APPLY的使用

CROSS APPLY 是 SQL Server 中的一个操作符&#xff0c;用于将一个表表达式&#xff08;如子查询、函数等&#xff09;与外部表进行连接。CROSS APPLY 类似于 INNER JOIN&#xff0c;但它允许你在一个查询中多次引用外部表的行&#xff0c;并且可以动态地生成结果集。 基本语法…

【算法】Floyd多源最短路径算法

目录 一、概念 二、思路 三、代码 一、概念 在前面的学习中&#xff0c;我们已经接触了Dijkstra、Bellman-Ford等单源最短路径算法。但首先我们要知道何为单源最短路径&#xff0c;何为多源最短路径 单源最短路径&#xff1a;从图中选取一点&#xff0c;求这个点到图中其他…

纯C++信号槽使用Demo (sigslot 库使用)

sigslot 库与QT的信号槽一样&#xff0c;通过发送信号&#xff0c;触发槽函数&#xff0c;信号槽不是QT的专利&#xff0c;早在2002年国外的一小哥用C写了sigslot 库&#xff0c;简单易用&#xff1b; 该库的官网&#xff08;喜欢阅读的小伙伴可以仔细研究&#xff09;&#xf…

【路径规划】PID搜索算法PSA求解UAV路径规划

摘要 本文研究了基于PID搜索算法&#xff08;PID Search Algorithm, PSA&#xff09;求解无人机&#xff08;UAV&#xff09;路径规划问题。通过引入PID控制思想来控制路径生成过程&#xff0c;使得无人机可以避开障碍物并在复杂地形中寻找最优路径。实验结果表明&#xff0c;…

【大数据学习 | kafka高级部分】kafka的数据同步和数据均衡

1. 数据同步 通过上图我们发现每个分区的数据都不一样&#xff0c;但是三个分区对外的数据却是一致的 这个时候如果第二个副本宕机了 但是如果是leader副本宕机了会发生什么呢&#xff1f; 2. 数据均衡 在线上程序运行的时候&#xff0c;有的时候因为上面副本的损坏&#xff…

java:使用Multi-Release Jar改造Java 1.7项目增加module-info.class以全面合规Java 9模块化规范

common-java是一个我维护了好多年的一个基础项目,编译目标为Java 1.7 现在整个团队的项目要做Java 9以上的技术迁移准备,就需要对这个在内部各项目中被广泛引用的基础项目进行改造,以适合Java 9的模块化规范。 Automatic-Module-Name Java 9的模块化规范(即Java Platform Mod…

机器视觉基础—双目相机

机器视觉基础—双目相机与立体视觉 双目相机概念与测量原理 我们多视几何的基础就在于是需要不同的相机拍摄的同一个物体的视场是由重合的区域的。通过下面的这种几何模型的目的是要得到估计物体的长度&#xff0c;或者说是离这个相机的距离。&#xff08;深度信息&#xff09…

C++继承(图文非常详细)

继承的概念 1.什么是继承 1.简单定义 我们来看一下下面这串代码注意其中的两个类father 和 son using namespace std; #include<iostream> class father { public:void definity(){cout << "father" << endl;} protected:int tall 180;int age …

【机器学习】均方误差根(RMSE:Root Mean Squared Error)

均方误差根&#xff08;Root Mean Squared Error&#xff0c;RMSE&#xff09;是机器学习和统计学中常用的误差度量指标&#xff0c;用于评估预测值与真实值之间的差异。它通常用于回归模型的评价&#xff0c;以衡量模型的预测精度。 RMSE的定义与公式 给定预测值 和实际值 …

Pandas | 数据分析时将特定列转换为数字类型 float64 或 int64的方法

类型转换 传统方法astype使用value_counts统计通过apply替换并使用astype转换 pd.to_numericx对连续变量进行转化⭐参数&#xff1a;返回值&#xff1a;示例代码&#xff1a; isnull不会检查空字符串 数据准备 有一组数据信息如下&#xff0c;其中主要将TotalCharges、MonthlyC…

混沌工程遇上AI:智能化系统韧性测试的前沿实践

#作者&#xff1a;曹付江 文章目录 1、什么是AI驱动的混沌工程&#xff1f;2、AI与混沌工程结合的价值3、技术实现3.1 AI模型开发3.1.1模型选择与构建3.1.2模型训练3.1.3 模型验证与调参3.1.4 模型测试3.1.5 知识库建设与持续学习 4、混沌工程与AI实践结合4.1 利用AI从运维专家…