Redis - 哨兵(Sentinel)

        Redis 的主从复制模式下,⼀旦主节点由于故障不能提供服务,需要⼈⼯进⾏主从切换,同时⼤量 的客⼾端需要被通知切换到新的主节点上,对于上了⼀定规模的应⽤来说,这种⽅案是⽆法接受的, 于是Redis从2.8开始提供了RedisSentinel(哨兵)加个来解决这个问题。本章主要内容如下:

  • RedisSentinel的概念
  • RedisSentinel的部署
  • RedisSentinel命令
  • RedisSentinel客⼾端
  • RedisSentinel实现原理

一、基本概念

        由于对Redis的许多概念都有不同的名词解释,所以在介绍RedisSentinel之前,先对⼏个名词 概念进⾏必要的说明,如表所⽰。

Redis Sentinel 相关名词解释

名词逻辑结构物理结构
主节点Redis 主服务⼀个独⽴的redis-server进程
从节点Redis 从服务⼀个独⽴的redis-server进程
Redis 数据节点主从节点主节点和从节点的进程
哨兵节点监控Redis数据节点的节点⼀个独⽴的redis-sentinel进程
哨兵节点集合若⼲哨兵节点的抽象组合若⼲redis-sentinel 进程
Redis 哨兵(Sentinel)Redis 提供的⾼可⽤⽅案哨兵节点集合 和 Redis主从节点
应⽤⽅泛指⼀个多多个客⼾端⼀个或多个连接Redis的进程

        Redis Sentinel 是Redis 的⾼可⽤实现⽅案,在实际的⽣产环境中,对提⾼整个系统的⾼可⽤是⾮常有 帮助的,本节⾸先整体梳理主从复制模式下故障处理可能产⽣的问题,⽽后引出⾼可⽤的概念,最后 重点分析RedisSentinel的基本架构、优势,以及是如何实现⾼可⽤的。

1.1、主从复制的问题

        Redis 的主从复制模式可以将主节点的数据改变同步给从节点,这样从节点就可以起到两个作⽤: 第⼀,作为主节点的⼀个备份,⼀旦主节点出了故障不可达的情况,从节点可以作为后备“顶”上 来,并且保证数据尽量不丢失(主从复制表现为最终⼀致性)。第⼆,从节点可以分担主节点上的读 压⼒,让主节点只承担写请求的处理,将所有的读请求负载均衡到各个从节点上。

  1. 主节点发⽣故障时,进⾏主备切换的过程是复杂的,需要完全的⼈⼯参与,导致故障恢复时间⽆法 保障。
  2. 主节点可以将读压⼒分散出去,但写压⼒/存储压⼒是⽆法被分担的,还是受到单机的限制。

        其中第⼀个问题是⾼可⽤问题,即Redis哨兵主要解决的问题。第⼆个问题是属于存储分布式的问 题,留给Redis集群去解决,本章我们集中讨论第⼀个问题。

1.2、⼈⼯恢复主节点故障

        Redis 主从复制模式下,主节点故障后需要进⾏的⼈⼯⼯作是⽐较繁琐的,在图中⼤致展⽰了整体过程。

Redis 主节点故障后需要进⾏的操作

 

 

 

 

 

 1)运维⼈员通过监控系统,发现Redis主节点故障宕机。

 2)运维⼈员从所有节点中,选择⼀个(此处选择了slave1)执⾏slaveofnoone,使其作为新的主 节点。

 3)运维⼈员让剩余从节点(此处为slave2)执⾏slaveof{newMasterIp}{newMasterPort}从新主节 点开始数据同步。

 4)更新应⽤⽅连接的主节点信息到{newMasterIp}{newMasterPort}。

 5)如果原来的主节点恢复,执⾏slaveof{newMasterIp}{newMasterPort}让其成为⼀个从节点。 上述过程可以看到基本需要⼈⼯介⼊,⽆法被认为架构是⾼可⽤的。⽽这就是RedisSentinel所要做 的。

1.3、哨兵⾃动恢复主节点故障

        当主节点出现故障时,RedisSentinel能⾃动完成故障发现和故障转移,并通知应⽤⽅,从⽽实现 真正的⾼可⽤。

        Redis Sentinel 是⼀个分布式架构,其中包含若⼲个Sentinel节点和Redis数据节点,每个 Sentinel 节点会对数据节点和其余Sentinel节点进⾏监控,当它发现节点不可达时,会对节点做下线表⽰。如果下线的是主节点,它还会和其他的Sentinel节点进⾏“协商”,当⼤多数Sentinel节点对 主节点不可达这个结论达成共识之后,它们会在内部“选举”出⼀个领导节点来完成⾃动故障转移的 ⼯作,同时将这个变化实时通知给Redis应⽤⽅。整个过程是完全⾃动的,不需要⼈⼯介⼊。整体的 架构如图所⽰。

这⾥的分布式架构是指:Redis数据节点、Sentinel节点集合、客⼾端分布在多个物理节点上,不要与后边介绍的RedisCluster分布式混淆。

Redis Sentinel 架构

        Redis Sentinel 相⽐于主从复制模式是多了若⼲(建议保持奇数)Sentinel节点⽤于实现监控数据节 点,哨兵节点会定期监控所有节点(包含数据节点和其他哨兵节点)。针对主节点故障的情况,故障 转移流程⼤致如下:

 1)主节点故障,从节点同步连接中断,主从复制停⽌。

 2)哨兵节点通过定期监控发现主节点出现故障。哨兵节点与其他哨兵节点进⾏协商,达成多数认   同主 节点故障的共识。这步主要是防⽌该情况:出故障的不是主节点,⽽是发现故障的哨兵节       点,该情况 经常发⽣于哨兵节点的⽹络被孤⽴的场景下。

 3)哨兵节点之间使⽤Raft算法选举出⼀个领导⻆⾊,由该节点负责后续的故障转移⼯作。

 4)哨兵领导者开始执⾏故障转移:从节点中选择⼀个作为新主节点;让其他从节点同步新主节点;通知应⽤层转移到新主节点。

 通过上⾯的介绍,可以看出RedisSentinel具有以下⼏个功能:

  • 监控:Sentinel节点会定期检测Redis数据节点、其余哨兵节点是否可达。
  • 故障转移:实现从节点晋升(promotion)为主节点并维护后续正确的主从关系。
  • 通知:Sentinel节点会将故障转移的结果通知给应⽤⽅。

二、安装部署(基于docker)

2.1、准备⼯作

1) 安装docker和docker-compose

docker-compose 的安装

 # ubuntuapt install docker-compose# centosyum install docker-compose

 

2) 停⽌之前的redis-server

 # 停⽌redis-serverservice redis-server stop# 停⽌ redis-sentinel 如果已经有的话. service redis-sentinel stop

 3) 使⽤docker获取redis镜像

 docker pull redis:5.0.

2.2、编排redis主从节点

1) 编写 docker-compose.yml

 创建 /root/redis/docker-compose.yml ,同时cd到yml所在⽬录中.

注意: docker中可以通过容器名字,作为ip地址,进⾏相互之间的访问.

version: '3.7'
services:master:image: 'redis:5.0.9'container_name: redis-masterrestart: alwayscommand: redis-server --appendonly yesports: - 6379:6379slave1:image: 'redis:5.0.9'container_name: redis-slave1restart: alwayscommand: redis-server --appendonly yes --slaveof redis-master 6379ports:- 6380:6379slave2:image: 'redis:5.0.9'container_name: redis-slave2restart: alwayscommand: redis-server --appendonly yes --slaveof redis-master 6379ports:- 6381:6379

也可以直接在windows上使⽤vscode编辑好yml,然后在上传到 linux 上.

2) 启动所有容器

docker-compose up -d

        如果启动后发现前⾯的配置有误,需要重新操作,使⽤ docker-compose down 即可停⽌并删除 刚才创建好的容器.

3) 查看运⾏⽇志

 docker-compose logs

上 述操作必须保证⼯作⽬录在yml的同级⽬录中,才能⼯作.

4) 验证

连接主节点

redis-cli -p 6379
 127.0.0.1:6379> info replication# Replicationrole:masterconnected_slaves:2slave0:ip=172.22.0.3,port=6379,state=online,offset=348,lag=1slave1:ip=172.22.0.4,port=6379,state=online,offset=348,lag=1master_replid:a22196b425ab42ddfd222cc5a64d53acffeb3e63master_replid2:0000000000000000000000000000000000000000master_repl_offset:348second_repl_offset:-1repl_backlog_active:1repl_backlog_size:1048576repl_backlog_first_byte_offset:1repl_backlog_histlen:348

连接从节点

redis-cli -p 6380
 127.0.0.1:6380> info replication# Replicationrole:slavemaster_host:redis-mastermaster_port:6379master_link_status:upmaster_last_io_seconds_ago:10master_sync_in_progress:0slave_repl_offset:446slave_priority:100slave_read_only:1connected_slaves:0master_replid:a22196b425ab42ddfd222cc5a64d53acffeb3e63master_replid2:0000000000000000000000000000000000000000master_repl_offset:446second_repl_offset:-1repl_backlog_active:1repl_backlog_size:1048576repl_backlog_first_byte_offset:1repl_backlog_histlen:446
redis-cli -p 6381
 127.0.0.1:6381> info replication# Replicationrole:slavemaster_host:redis-mastermaster_port:6379master_link_status:upmaster_last_io_seconds_ago:7master_sync_in_progress:0slave_repl_offset:516slave_priority:100slave_read_only:1connected_slaves:0master_replid:a22196b425ab42ddfd222cc5a64d53acffeb3e63master_replid2:0000000000000000000000000000000000000000master_repl_offset:516second_repl_offset:-1repl_backlog_active:1repl_backlog_size:1048576repl_backlog_first_byte_offset:1repl_backlog_histlen:516

2.3、编排 redis-sentinel节点

        也可以把redis-sentinel放到和上⾯的redis的同⼀个yml中进⾏容器编排.此处分成两组,主要是为 了两⽅⾯:

  • 观察⽇志⽅便
  • 确保redis主从节点启动之后才启动redis-sentinel.如果先启动redis-sentinel的话,可能触发额 外的选举过程,混淆视听.(不是说先启动哨兵不⾏,⽽是观察的结果可能存在⼀定随机性).

1) 编写 docker-compose.yml

创建  /root/redis-sentinel/docker-compose.yml  ,同时cd到yml所在⽬录中.

注意: 每个⽬录中只能存在⼀个docker-compose.yml⽂件.

 version: '3.7'services:sentinel1:image: 'redis:5.0.9'container_name: redis-sentinel-1restart: alwayscommand: redis-sentinel /etc/redis/sentinel.confvolumes:- ./sentinel1.conf:/etc/redis/sentinel.confports:- 26379:26379sentinel2:image: 'redis:5.0.9'container_name: redis-sentinel-2restart: alwayscommand: redis-sentinel /etc/redis/sentinel.confvolumes:- ./sentinel2.conf:/etc/redis/sentinel.confports:- 26380:26379sentinel3:image: 'redis:5.0.9'container_name: redis-sentinel-3restart: alwayscommand: redis-sentinel /etc/redis/sentinel.confvolumes:- ./sentinel3.conf:/etc/redis/sentinel.confports:- 26381:26379networks:default:external:name: redis-data_default  

也可以直接在windows上使⽤vscode编辑好yml,然后在上传到linux上.

2) 创建配置⽂件

创建 sentinel1.conf  sentinel2.conf  sentinel3.conf .三份⽂件的内容是完全相同的.

都放到 /root/redis-sentinel/ ⽬录中.

 bind 0.0.0.0port 26379sentinel monitor redis-master redis-master 6379 2sentinel down-after-milliseconds redis-master 1000

理解 sentinel monitor

sentinel monitor 主节点名 主节点ip 主节点端⼝ 法定票数
  • 主节点名,这个是哨兵内部⾃⼰起的名字.
  • 主节点ip,部署redis-master的设备ip.此处由于是使⽤docker,可以直接写docker的容器名,会 被⾃动 DNS 成对应的容器ip
  • 主节点端⼝,不解释.
  • 法定票数,哨兵需要判定主节点是否挂了.但是有的时候可能因为特殊情况,⽐如主节点仍然⼯作正 常,但是哨兵节点⾃⼰⽹络出问题了,⽆法访问到主节点了.此时就可能会使该哨兵节点认为主节点 下线,出现误判.使⽤投票的⽅式来确定主节点是否真的挂了是更稳妥的做法.需要多个哨兵都认为 主节点挂了,票数>=法定票数之后,才会真的认为主节点是挂了.

理解 sentinel down-after-milliseconds

  • 主节点和哨兵之间通过⼼跳包来进⾏沟通.如果⼼跳包在指定的时间内还没回来,就视为是节点出现 故障.

既然内容相同,为啥要创建多份配置⽂件?

redis-sentinel 在运⾏中可能会对配置进⾏rewrite,修改⽂件内容.如果⽤⼀份⽂件,就可能出现修改 混乱的情况.

3) 启动所有容器

docker-compose up -d

如果启动后发现前⾯的配置有误,需要重新操作,使⽤docker-compose down 即可停⽌并删除刚才创建好的容器.

4) 查看运⾏⽇志

docker-compose logs

 上述操作必须保证⼯作⽬录在yml的同级⽬录中,才能⼯作.

可以看到,哨兵节点已经通过主节点,认识到了对应的从节点.

5) 观察redis-sentinel 的配置rewrite

再次打开哨兵的配置⽂件,发现⽂件内容已经被⾃动修改了.

 bind 0.0.0.0port 26379sentinel myid 4d2d562860b4cdd478e56494a01e5c787246b6aasentinel deny-scripts-reconfig yes# Generated by CONFIG REWRITEdir "/data"sentinel monitor redis-master 172.22.0.4 6379 2sentinel down-after-milliseconds redis-master 1000sentinel config-epoch redis-master 1sentinel leader-epoch redis-master 1sentinel known-replica redis-master 172.22.0.2 6379sentinel known-replica redis-master 172.22.0.3 6379sentinel known-sentinel redis-master 172.22.0.7 26379 f718caed536d178f5ea6d1316d09407cfae43dd2sentinel known-sentinel redis-master 172.22.0.5 26379 2ab6de82279bb77f8397c309d36238f51273e80asentinel current-epoch 1

# Generated by CONFIG REWRITE 这⾥的内容就是⾃动修改的.

对⽐这三份⽂件,可以看到配置内容是存在差异的.

三、重新选举

3.1、redis-master 宕机之后

⼿动把 redis-master ⼲掉

docker stop redis-master

观察哨兵的⽇志,可以看到哨兵发现了主节点sdown,进⼀步的由于主节点宕机得票达到 master 被判定为odown.

  • 主观下线(SubjectivelyDown,SDown):哨兵感知到主节点没⼼跳了.判定为主观下线
  • 客观下线(ObjectivelyDown,ODown):多个哨兵达成⼀致意⻅,才能认为master确实下线了.

接下来,哨兵们挑选出了⼀个新的master.

此时,对于Redis来说仍然是可以正常使⽤的.

3.2、redis-master 重启之后

⼿动把 redis-master 启动起来

docker start redis-master

观察哨兵⽇志

可以看到刚才新启动的 redis-master 被当成了slave

使⽤redis-cli 也可以进⼀步的验证这⼀点

 127.0.0.1:6379> info replication# Replicationrole:slavemaster_host:172.22.0.4master_port:6379master_link_status:upmaster_last_io_seconds_ago:0master_sync_in_progress:0slave_repl_offset:324475slave_priority:100slave_read_only:1connected_slaves:0master_replid:ececc285a2892fba157318c77ebe1409f9c2254emaster_replid2:0000000000000000000000000000000000000000master_repl_offset:324475second_repl_offset:-1repl_backlog_active:1repl_backlog_size:1048576repl_backlog_first_byte_offset:318295repl_backlog_histlen:6181

3.3、结论

  • Redis主节点如果宕机,哨兵会把其中的⼀个从节点,提拔成主节点.
  • 当之前的Redis主节点重启之后,这个主节点被加⼊到哨兵的监控中,但是只会被作为从节点使⽤.

四、选举原理

        假定当前环境如上⽅介绍,三个哨兵(sentenal1,sentenal2,sentenal3),⼀个主节点(redis-master),两 个从节点(redis-slave1,redis-slave2).

当主节点出现故障,就会触发重新⼀系列过程.

4.1、 主观下线

当redis-master 宕机,此时redis-master和三个哨兵之间的⼼跳包就没有了.

此时,站在三个哨兵的⻆度来看,redis-master出现严重故障.因此三个哨兵均会把redis-master判定 为主观下线(SDown)

4.2、客观下线

        此时,哨兵sentenal1,sentenal2,sentenal3均会对主节点故障这件事情进⾏投票.当故障得票数>=配置的法定票数之后,

sentinel monitor redis-master 172.22.0.4 6379 2

在这个地⽅配置的2,即为法定票数

此时意味着redis-master故障这个事情被做实了.此时触发客观下线(ODown)

4.3、选举出哨兵的leader

        接下来需要哨兵把剩余的slave中挑选出⼀个新的master.这个⼯作不需要所有的哨兵都参与.只需要 选出个代表(称为leader),由leader负责进⾏slave升级到master的提拔过程.

这个选举的过程涉及到 Raft 算法

假定一共三个哨兵节点,S1, S2, S3

  1. 每个哨兵节点都给其他所有哨兵节点,发起⼀个"拉票请求".(S1->S2,S1->S3,S2->S1,S2->S3, S3->S1,S3->S2)
  2. 收到拉票请求的节点,会回复⼀个"投票响应".响应的结果有两种可能,投or不投;⽐如S1给S2发了个投票请求,S2就会给S1返回投票响应.  到底S2是否要投S1呢?取决于S2是否给别⼈投过票了.(每个哨兵只有⼀票).  如果S2没有给别⼈投过票,换⽽⾔之,S1是第⼀个向S2拉票的,那么S2就会投S1.否则则不投.
  3. ⼀轮投票完成之后,发现得票超过半数的节点,⾃动成为leader;如果出现平票的情况(S1投S2,S2投S3,S3投S1,每⼈⼀票),就重新再投⼀次即可,这也是为啥建议哨兵节点设置成奇数个的原因.如果是偶数个,则增⼤了平票的概率,带来不必要的开销.
  4. leader 节点负责挑选⼀个slave成为新的master.当其他的sentenal发现新的master出现了,就 说明选举结束了.

简⽽⾔之,Raft算法的核⼼就是"先下⼿为强".谁率先发出了拉票请求,谁就有更⼤的概率成为leader.

这里的决定因素成了"⽹络延时".⽹络延时本⾝就带有⼀定随机性.

具体选出的哪个节点是leader,这个不重要,重要的是能选出⼀个节点即可.

4.4、leader 挑选出合适的slave成为新的 master

挑选规则:

  1. ⽐较优先级.优先级⾼(数值⼩的)的上位.优先级是配置⽂件中的配置项(slave-priority 或者 replica-priority ).
  2. ⽐较 replication offset 谁复制的数据多,⾼的上位.
  3. ⽐较 run id ,谁的id⼩,谁上位

当某个slave节点被指定为master之后,

  1. leader 指定该节点执⾏ slave no one ,成为master
  2. leader 指定剩余的slave节点,都依附于这个新master

五、⼩结

        上述过程,都是"⽆⼈值守",Redis⾃动完成的.这样做就解决了主节点宕机之后需要⼈⼯⼲预的问题, 提⾼了系统的稳定性和可⽤性.

⼀些注意事项:

  • 哨兵节点不能只有⼀个.否则哨兵节点挂了也会影响系统可⽤性.
  • 哨兵节点最好是奇数个.⽅便选举leader,得票更容易超过半数.
  • 哨兵节点不负责存储数据.仍然是redis主从节点负责存储.
  • 哨兵+主从复制解决的问题是"提⾼可⽤性",不能解决"数据极端情况下写丢失"的问题.
  • 哨兵+主从复制不能提⾼数据的存储容量.当我们需要存的数据接近或者超过机器的物理内存,这样 的结构就难以胜任了.

为了能存储更多的数据,就引⼊了集群.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/60008.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

24年配置CUDA12.4,Pytorch2.5.1,CUDAnn9.5运行环境

没什么好介绍的,直接说了。 下载 首先打开命令行,输入代码查看显卡最高支持的cuda版本,下载的版本不要高于该版本 nvidia-smi PyTorch 插件这个是PyTorch下载地址,就按照我这么选CUDA版本就选最新的,看好绿框里的CU…

debian系统安装qt的时候 显示xcb相关文件缺失

如果是安装之后的问题 我们可以选择使用ldd的命令查看当前依赖的so那些文件确实 ldd /home/yinsir/Qt/5.15.2/gcc_64/plugins/platforms/libqxcb.so 本人在进行打包的时候 出现则会个报错 ERROR: ldd outputLine: “libxcb-util.so.1 > not found” ERROR: for binary: “/…

找工作就上万码优才,海量技术岗位等你来

已至岁末,不论你将实习,或正在求职,求职平台千千万万,但简历如落叶般无人问津。 是否因未找到理想职位而心生焦虑?别急,万码优才在这里,为你点亮职业之路的明灯! 今天给大家推荐一…

⭐SmartControl: Enhancing ControlNet for Handling Rough Visual Conditions

目录 0 Abstract 1 Motivation 2 Related Work 2.1 Text-to-Image Diffusion Model 2.2 Controllable Text-to-Image Generation 2.3 ControlNet 2.4 Control Scale Exploration 3 Method 3.1 Framework 3.2 Control Scale Predictor 3.3 Unaligned Data Constructi…

vue3 + element-plus 的 upload + axios + django 文件上传并保存

之前在网上搜了好多教程,一直没有找到合适自己的,要么只有前端部分没有后端,要么就是写的不是很明白。所以还得靠自己摸索出来后,来此记录一下整个过程。 其实就是不要用默认的 action,要手动实现上传方式 http-reque…

更改Ubuntu22.04锁屏壁纸

更改Ubuntu22.04锁屏壁纸 sudo apt install gnome-shell-extensions gnome-shell-extension-manager安装Gnome Shell 扩展管理器后,打开“扩展管理器”并使用搜索栏找到“锁屏背景”扩展

SDL打开YUV视频

文章目录 问题1:如何控制帧率?问题2:如何触发退出事件?问题3:如何实时调整视频窗口的大小问题4:YUV如何一次读取一帧的数据? 问题1:如何控制帧率? 单独用一个子线程给主线…

SQL server 中 CROSS APPLY的使用

CROSS APPLY 是 SQL Server 中的一个操作符,用于将一个表表达式(如子查询、函数等)与外部表进行连接。CROSS APPLY 类似于 INNER JOIN,但它允许你在一个查询中多次引用外部表的行,并且可以动态地生成结果集。 基本语法…

【算法】Floyd多源最短路径算法

目录 一、概念 二、思路 三、代码 一、概念 在前面的学习中,我们已经接触了Dijkstra、Bellman-Ford等单源最短路径算法。但首先我们要知道何为单源最短路径,何为多源最短路径 单源最短路径:从图中选取一点,求这个点到图中其他…

纯C++信号槽使用Demo (sigslot 库使用)

sigslot 库与QT的信号槽一样,通过发送信号,触发槽函数,信号槽不是QT的专利,早在2002年国外的一小哥用C写了sigslot 库,简单易用; 该库的官网(喜欢阅读的小伙伴可以仔细研究)&#xf…

【路径规划】PID搜索算法PSA求解UAV路径规划

摘要 本文研究了基于PID搜索算法(PID Search Algorithm, PSA)求解无人机(UAV)路径规划问题。通过引入PID控制思想来控制路径生成过程,使得无人机可以避开障碍物并在复杂地形中寻找最优路径。实验结果表明,…

【大数据学习 | kafka高级部分】kafka的数据同步和数据均衡

1. 数据同步 通过上图我们发现每个分区的数据都不一样,但是三个分区对外的数据却是一致的 这个时候如果第二个副本宕机了 但是如果是leader副本宕机了会发生什么呢? 2. 数据均衡 在线上程序运行的时候,有的时候因为上面副本的损坏&#xff…

java:使用Multi-Release Jar改造Java 1.7项目增加module-info.class以全面合规Java 9模块化规范

common-java是一个我维护了好多年的一个基础项目,编译目标为Java 1.7 现在整个团队的项目要做Java 9以上的技术迁移准备,就需要对这个在内部各项目中被广泛引用的基础项目进行改造,以适合Java 9的模块化规范。 Automatic-Module-Name Java 9的模块化规范(即Java Platform Mod…

机器视觉基础—双目相机

机器视觉基础—双目相机与立体视觉 双目相机概念与测量原理 我们多视几何的基础就在于是需要不同的相机拍摄的同一个物体的视场是由重合的区域的。通过下面的这种几何模型的目的是要得到估计物体的长度,或者说是离这个相机的距离。(深度信息&#xff09…

C++继承(图文非常详细)

继承的概念 1.什么是继承 1.简单定义 我们来看一下下面这串代码注意其中的两个类father 和 son using namespace std; #include<iostream> class father { public:void definity(){cout << "father" << endl;} protected:int tall 180;int age …

【机器学习】均方误差根(RMSE:Root Mean Squared Error)

均方误差根&#xff08;Root Mean Squared Error&#xff0c;RMSE&#xff09;是机器学习和统计学中常用的误差度量指标&#xff0c;用于评估预测值与真实值之间的差异。它通常用于回归模型的评价&#xff0c;以衡量模型的预测精度。 RMSE的定义与公式 给定预测值 和实际值 …

Pandas | 数据分析时将特定列转换为数字类型 float64 或 int64的方法

类型转换 传统方法astype使用value_counts统计通过apply替换并使用astype转换 pd.to_numericx对连续变量进行转化⭐参数&#xff1a;返回值&#xff1a;示例代码&#xff1a; isnull不会检查空字符串 数据准备 有一组数据信息如下&#xff0c;其中主要将TotalCharges、MonthlyC…

混沌工程遇上AI:智能化系统韧性测试的前沿实践

#作者&#xff1a;曹付江 文章目录 1、什么是AI驱动的混沌工程&#xff1f;2、AI与混沌工程结合的价值3、技术实现3.1 AI模型开发3.1.1模型选择与构建3.1.2模型训练3.1.3 模型验证与调参3.1.4 模型测试3.1.5 知识库建设与持续学习 4、混沌工程与AI实践结合4.1 利用AI从运维专家…

《深度学习神经网络:颠覆生活的魔法科技与未来发展新航向》

深度学习神经网络对我们生活的影响 一、医疗领域 深度学习神经网络在医疗领域的应用可谓意义重大。在疾病诊断方面&#xff0c;它能够精准分析医疗影像&#xff0c;如通过对大量的 CT、MRI 图像进行深度学习&#xff0c;快速准确地识别出微小的肿瘤病变&#xff0c;为医生提供…

YOLOv11融合特征细化前馈网络 FRFN[CVPR2024]及相关改进思路

YOLOv11v10v8使用教程&#xff1a; YOLOv11入门到入土使用教程 一、 模块介绍 论文链接&#xff1a;Adapt or Rerish 代码链接&#xff1a;https://github.com/joshyZhou/AST 论文速览&#xff1a;基于 transformer 的方法在图像恢复任务中取得了有希望的性能&#xff0c;因为…