鸿蒙多线程开发——Worker多线程

1、概 述

1.1、基本介绍

Worker主要作用是为应用程序提供一个多线程的运行环境,可满足应用程序在执行过程中与主线程分离,在后台线程中运行一个脚本进行耗时操作,极大避免类似于计算密集型或高延迟的任务阻塞主线程的运行。

创建Worker的线程称为宿主线程(不一定是主线程,工作线程也支持创建Worker子线程),Worker自身的线程称为Worker子线程(或Actor线程、工作线程)。每个Worker子线程与宿主线程拥有独立的实例,包含基础设施、对象、代码段等,因此每个Worker启动存在一定的内存开销,需要限制Worker的子线程数量。Worker子线程和宿主线程之间的通信是基于消息传递的,Worker通过序列化机制与宿主线程之间相互通信,完成命令及数据交互。示意图如下:

图片

1.2、注意事项

  • 创建Worker时,有手动和自动两种创建方式,手动创建Worker线程目录及文件时,还需同步进行相关配置。

👉🏻 手动创建:开发者手动创建相关目录及文件,此时需要配置build-profile.json5的相关字段信息,Worker线程文件才能确保被打包到应用中。配置代码如下:

"buildOption": {  "sourceOption": {    "workers": [      "./src/main/ets/workers/worker.ets"    ]  }}

👉🏻 自动创建:DevEco Studio支持一键生成Worker,在对应的{moduleName}目录下任意位置,点击鼠标右键 > New > Worker,即可自动生成Worker的模板文件及配置信息,无需再手动在build-profile.json5中进行相关配置。

  • 使用Worker能力时,构造函数中传入的Worker线程文件的路径在不同版本有不同的规则。示例如下(不同场景中,加载的url路径规则有所不同,细则看后文【1.3、Woker文件路径规则】)

// 导入模块import { worker } from '@kit.ArkTS';// API 9及之后版本使用:const worker1: worker.ThreadWorker = new worker.ThreadWorker('entry/ets/workers/MyWorker.ets');// API 8及之前版本使用:const worker2: worker.Worker = new worker.Worker('entry/ets/workers/MyWorker.ets');
  • Worker创建后需要手动管理生命周期,且最多同时运行的Worker子线程数量为64个。

    • Worker的创建和销毁耗费性能,建议我们合理管理已创建的Worker并重复使用。Worker空闲时也会一直运行,因此当不需要Worker时,可以调用terminate()接口或close()方法主动销毁Worker。若Worker处于已销毁或正在销毁等非运行状态时,调用其功能接口,会抛出相应的错误。

    • Worker的数量由内存管理策略决定,设定的内存阈值为1.5GB和设备物理内存的60%中的较小者。在内存允许的情况下,系统最多可以同时运行64个Worker。如果尝试创建的Worker数量超出这一上限,系统将抛出错误:“Worker initialization failure, the number of workers exceeds the maximum.”。实际运行的Worker数量会根据当前内存使用情况动态调整。一旦所有Worker和主线程的累积内存占用超过了设定的阈值,系统将触发内存溢出(OOM)错误,导致应用程序崩溃。

  • 由于不同线程中上下文对象是不同的,因此Worker线程只能使用线程安全的库(例如UI相关的非线程安全库不能使用)

  • 序列化传输的数据量大小限制为16MB。

  • 使用Worker模块时,需要在主线程中注册onerror接口,否则当Worker线程出现异常时会发生jscrash问题。

  • 不支持跨HAP使用Worker线程文件。

  • 创建Worker对象时仅允许加载本模块下存在的Worker线程文件,不支持加载其他模块的Worker线程文件。若依赖其他模块提供的Worker功能,需要将Worker实现的整套逻辑封装到方法中,将方法导出后供其他模块使用。

  • 引用HAR/HSP前,需要先配置对HAR/HSP的依赖。

  • 不支持在Worker工作线程中使用AppStorage。

1.3、Woker文件路径规则

构造函数中的scriptURL要求如下:

  • scriptURL的组成包含 {moduleName}/ets 和相对路径 relativePath。

  • relativePath是Worker线程文件相对于"{moduleName}/src/main/ets/"目录的相对路径。

👉🏻 场景1:加载Ability中的Worker线程文件

加载Ability中的worker线程文件,加载路径规则:{moduleName}/ets/{relativePath}。​​​​​​​

import { worker } from '@kit.ArkTS';// worker线程文件所在路径:"entry/src/main/ets/workers/worker.ets"const workerStage1: worker.ThreadWorker = new worker.ThreadWorker('entry/ets/workers/worker.ets');// worker线程文件所在路径:"phone/src/main/ets/ThreadFile/workers/worker.ets"const workerStage2: worker.ThreadWorker = new worker.ThreadWorker('phone/ets/ThreadFile/workers/worker.ets');

👉🏻 场景2:加载HSP中的Worker线程文件

加载HSP中worker线程文件,加载路径规则:{moduleName}/ets/{relativePath}。​​​​​​​

import { worker } from '@kit.ArkTS';// worker线程文件所在路径:"hsp/src/main/ets/workers/worker.ets"const workerStage3: worker.ThreadWorker = new worker.ThreadWorker('hsp/ets/workers/worker.ets');

👉🏻 场景3:加载HSP中的Worker线程文件

加载HAR中worker线程文件存在以下两种情况:

  • @标识路径加载形式:所有种类的模块加载本地HAR中的Worker线程文件,加载路径规则:@{moduleName}/ets/{relativePath}。

  • 相对路径加载形式:本地HAR加载该包内的Worker线程文件,加载路径规则:创建Worker对象所在文件与Worker线程文件的相对路径.

import { worker } from '@kit.ArkTS';// @标识路径加载形式:// worker线程文件所在路径: "har/src/main/ets/workers/worker.ets"const workerStage4: worker.ThreadWorker = new worker.ThreadWorker('@har/ets/workers/worker.ets');// worker线程文件所在路径: "har/src/main/ets/workers/worker.ets"// 创建Worker对象的文件所在路径:"har/src/main/ets/components/mainpage/MainPage.ets"const workerStage5: worker.ThreadWorker = new worker.ThreadWorker('../../workers/worker.ets');

2、案 例

下面将使用一个CPU密集型任务来做案例。

CPU密集型任务是指需要占用系统资源处理大量计算能力的任务,需要长时间运行,这段时间会阻塞线程其它事件的处理,不适宜放在主线程进行。例如图像处理、视频编码、数据分析等。

基于多线程并发机制处理CPU密集型任务可以提高CPU利用率,提升应用程序响应速度。

当任务不需要长时间(3分钟)占据后台线程,而是一个个独立的任务时,推荐使用TaskPool,反之推荐使用Worker。开发步骤如下:

👉🏻 step 1:DevEco Studio提供了Worker创建的模板,新建一个Worker线程,例如命名为“MyWorker”。

图片

👉🏻 step 2:在主线程中通过调用ThreadWorker的constructor()方法创建Worker对象,当前线程为宿主线程。​​​​​​​

// Index.etsimport { worker } from '@kit.ArkTS';const workerInstance: worker.ThreadWorker = new worker.ThreadWorker('entry/ets/workers/MyWorker.ts');

👉🏻 step 3: 在宿主线程中通过调用onmessage()方法接收Worker线程发送过来的消息,并通过调用postMessage()方法向Worker线程发送消息。

例如向Worker线程发送训练和预测的消息,同时接收Worker线程发送回来的消息。​​​​​​​

// Index.etslet done = false;// 接收Worker子线程的结果workerInstance.onmessage = (() => {  console.info('MyWorker.ts onmessage');  if (!done) {    workerInstance.postMessage({ 'type': 1, 'value': 0 });    done = true;  }})workerInstance.onerror = (() => {  // 接收Worker子线程的错误信息})// 向Worker子线程发送训练消息workerInstance.postMessage({ 'type': 0 });

👉🏻 step 4: 在MyWorker.ts文件中绑定Worker对象,当前线程为Worker线程。​​​​​​​

// MyWorker.tsimport { worker, ThreadWorkerGlobalScope, MessageEvents, ErrorEvent } from '@kit.ArkTS';let workerPort: ThreadWorkerGlobalScope = worker.workerPort;

👉🏻 step 5:在Worker线程中通过调用onmessage()方法接收宿主线程发送的消息内容,并通过调用postMessage()方法向宿主线程发送消息。

例如在Worker线程中定义预测模型及其训练过程,同时与主线程进行信息交互。​​​​​​​

// MyWorker.ts// 定义训练模型及结果let result: Array<number>;// 定义预测函数function predict(x: number): number { return result[x];}// 定义优化器训练过程function optimize(): void { result = [0];}// Worker线程的onmessage逻辑workerPort.onmessage = (e: MessageEvents): void => { // 根据传输的数据的type选择进行操作 switch (e.data.type as number) {  case 0:  // 进行训练   optimize();  // 训练之后发送主线程训练成功的消息   workerPort.postMessage({ type: 'message', value: 'train success.' });   break;  case 1:  // 执行预测   const output: number = predict(e.data.value as number);  // 发送主线程预测的结果   workerPort.postMessage({ type: 'predict', value: output });   break;  default:   workerPort.postMessage({ type: 'message', value: 'send message is invalid' });   break; }}

👉🏻 step 6:在Worker线程中完成任务之后,执行Worker线程销毁操作。销毁线程的方式主要有两种:根据需要可以在宿主线程中对Worker线程进行销毁;也可以在Worker线程中主动销毁Worker线程。

在宿主线程中通过调用onexit()方法定义Worker线程销毁后的处理逻辑。​​​​​​​

// Worker线程销毁后,执行onexit回调方法workerInstance.onexit = (): void => { console.info("main thread terminate");}// 方式一:在宿主线程中通过调用terminate()方法销毁Worker线程,并终止Worker接收消息。// 销毁Worker线程workerInstance.terminate();// 方式二:在Worker线程中通过调用close()方法主动销毁Worker线程,并终止Worker接收消息。// 销毁线程workerPort.close();

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/60012.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【大数据学习 | kafka】消费者的分区分配规则

1. 概述 上面我们提到过&#xff0c;消费者有的时候会少于或者多于分区的个数&#xff0c;那么如果消费者少了有的消费者要消费多个分区的数据&#xff0c;如果消费者多了&#xff0c;有的消费者就可能没有分区的数据消费。 那么这个关系是如何分配的呢&#xff1f; 现在我们…

Python接口自动化测试自学指南(项目实战)

&#x1f345; 点击文末小卡片 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 接口自动化测试是指通过编写程序来模拟用户的行为&#xff0c;对接口进行自动化测试。Python是一种流行的编程语言&#xff0c;它在接口自动化测试中得到了广…

【Python进阶】Python网络协议与套接字编程:构建客户端和服务器

1、网络通信基础与网络协议 1.1 网络通信模型概述 网络通信是信息时代基石&#xff0c;它如同现实世界中的邮递系统&#xff0c;将数据从一处传递到另一处。其中&#xff0c;OSI七层模型与TCP/IP四层或五层模型是理解和构建网络通信的基础。 1.1.1 OSI七层模型与TCP/IP四层/…

Redis - 哨兵(Sentinel)

Redis 的主从复制模式下&#xff0c;⼀旦主节点由于故障不能提供服务&#xff0c;需要⼈⼯进⾏主从切换&#xff0c;同时⼤量 的客⼾端需要被通知切换到新的主节点上&#xff0c;对于上了⼀定规模的应⽤来说&#xff0c;这种⽅案是⽆法接受的&#xff0c; 于是Redis从2.8开始提…

UE5 metahuman 头发物理模拟

https://www.youtube.com/watch?vyYmdgtP6cQA 头发梳理物理 打开Unreal Engine&#xff0c;选择一个角色模型 点击“Groom”选项卡&#xff0c;在“Physics”部分下&#xff0c;找到“Custom Solver”&#xff0c;点击下拉菜单&#xff0c;选择“WindDrivenSystem”。 在“…

大数据 ETL + Flume 数据清洗 — 详细教程及实例(附常见问题及解决方案)

大数据 ETL Flume 数据清洗 — 详细教程及实例 1. ETL 和 Flume 概述1.1 ETL&#xff08;Extract, Transform, Load&#xff09;1.2 Flume 概述 2. Flume 环境搭建2.1 下载并安装 Flume2.2 启动 Flume 3. Flume 配置和常见 Source、Sink、Channel3.1 Flume Source3.2 Flume Si…

24年配置CUDA12.4,Pytorch2.5.1,CUDAnn9.5运行环境

没什么好介绍的&#xff0c;直接说了。 下载 首先打开命令行&#xff0c;输入代码查看显卡最高支持的cuda版本&#xff0c;下载的版本不要高于该版本 nvidia-smi PyTorch 插件这个是PyTorch下载地址&#xff0c;就按照我这么选CUDA版本就选最新的&#xff0c;看好绿框里的CU…

架构师备考-概念背诵(系统架构)

软件架构概念 一个程序和计算系统软件体系结构是指系统的一个或者多个结构。结构中包括软件的构件,构件的外部可见属性以及它们之间的相互关系。体系结构并非可运行软件。确切地说,它是一种表达,使软件工程师能够: (1)分析设计在满足所规定的需求方面的有效性:(2)在设计变…

Linux服务器软件包管理的使用

在 Linux 系统中&#xff0c;软件包管理器是用于安装、升级、删除和管理软件包的工具。不同的 Linux 发行版使用不同的软件包管理器&#xff0c;通常根据使用的包格式和包管理系统&#xff08;如 .deb 或 .rpm&#xff09;来区分。下面将介绍几种常见的 Linux 软件包管理器及其…

debian系统安装qt的时候 显示xcb相关文件缺失

如果是安装之后的问题 我们可以选择使用ldd的命令查看当前依赖的so那些文件确实 ldd /home/yinsir/Qt/5.15.2/gcc_64/plugins/platforms/libqxcb.so 本人在进行打包的时候 出现则会个报错 ERROR: ldd outputLine: “libxcb-util.so.1 > not found” ERROR: for binary: “/…

esp32s3连接控制HC-08蓝牙设备

趁双十一买了一块esp32S3单片,尝试之后发现他的蓝牙只支持ble,我的机器人以前是使用手机控制的,我想借此机会,为他添加一个esp32S3的大脑。 查了一下资料,写了一个demo,记录一下代码: #include "BLEDevice.h" //#include "BLEScan.h" //hc-08的ble…

WordPress文章自动提交Bing搜索引擎:PHP推送脚本教程

随着网站SEO优化的重要性日益增加,将新发布的内容快速提交到搜索引擎显得尤为重要。尤其对于Bing站长平台,自动化推送能让Bing尽快发现和索引我们网站的新内容。本文将详细介绍如何通过PHP脚本自动推送WordPress当天发布的文章至Bing站长平台,确保新文章被Bing及时收录。 前…

指令重排序:Java程序中的隐秘优化

什么是重排序&#xff1f; 在编写Java程序时&#xff0c;我们通常会期望代码的执行顺序与编写顺序一致。然而&#xff0c;为了优化性能&#xff0c;编译器、JVM或CPU可能会对指令的实际执行顺序进行调整&#xff0c;这种现象被称为重排序。重排序是现代计算机系统中常见的优化…

开源大模型推理引擎现状及常见推理优化方法总结

原文&#xff1a;https://zhuanlan.zhihu.com/p/755874470 前言 前一段时间sglang-v0.3.0和vllm-v0.6.0前后脚发布之后&#xff0c;就一直想总结梳理一下现在主流的大模型推理引擎。因为我觉得这也算是一个有意义的节点吧&#xff0c;从此开源大模型推理引擎总算是由"非…

【信号处理】绘制IQ信号时域图、星座图、功率谱

时域图 # 导入相关的库 import pickle import matplotlib.pyplot as plt import numpy as np from pathlib import Path import oswith open(r"C:\0-数据集\公开\RML2016\RML2016.10a_dict.pkl", rb) as file:Xd pickle.load(file, encodingbytes) snrs, mods map…

第 1 章 - Go语言简介

第 1 章 - Go语言简介 1.1 什么是Go语言 Go语言&#xff0c;又称 Golang&#xff0c;是一种静态类型的编译型语言&#xff0c;由 Google 公司的 Robert Griesemer、Rob Pike 和 Ken Thompson 于 2007 年开始设计&#xff0c;并在 2009 年正式对外发布。Go 语言的设计目标是提…

C++优选算法十二 栈

在C中&#xff0c;stack 是一种标准模板库&#xff08;STL&#xff09;容器适配器&#xff0c;它提供了后进先出&#xff08;LIFO, Last In First Out&#xff09;的数据结构。stack 适配器基于其他底层容器&#xff08;如 deque 或 vector&#xff09;来实现&#xff0c;但只提…

找工作就上万码优才,海量技术岗位等你来

已至岁末&#xff0c;不论你将实习&#xff0c;或正在求职&#xff0c;求职平台千千万万&#xff0c;但简历如落叶般无人问津。 是否因未找到理想职位而心生焦虑&#xff1f;别急&#xff0c;万码优才在这里&#xff0c;为你点亮职业之路的明灯&#xff01; 今天给大家推荐一…

⭐SmartControl: Enhancing ControlNet for Handling Rough Visual Conditions

目录 0 Abstract 1 Motivation 2 Related Work 2.1 Text-to-Image Diffusion Model 2.2 Controllable Text-to-Image Generation 2.3 ControlNet 2.4 Control Scale Exploration 3 Method 3.1 Framework 3.2 Control Scale Predictor 3.3 Unaligned Data Constructi…

Vue数据响应式原理

前言 Vue是一个结构的框架,也就是 数据层、视图层、数据-视图层&#xff1b;响应式的原理就是实现当数据更新时&#xff0c;视图层也要相应的更新 响应式实现 基于发布订阅模式和数据劫持实现 1.发布订阅模式&#xff1a;vue使用发布订阅模式来实现数据变动的通知和更新 2…