OpenCV如何实现背投

 返回:OpenCV系列文章目录(持续更新中......)

上一篇:OpenCV直方图比较
下一篇 :OpenCV系列文章目录(持续更新中......)

目标

在本教程中,您将学习:

  • 什么是背投以及它为什么有用
  • 如何使用 OpenCV 函数 cv::calcBackProject 计算背投
  • 如何使用 OpenCV 函数 cv::mixChannels 混合图像的不同通道

理论

什么是背投?

  • 背投是一种记录给定图像的像素与直方图模型中像素分布的拟合程度的方法。
  • 为简化起见:对于“背投”,您可以计算要素的直方图模型,然后使用它在影像中查找此要素。
  • 应用示例:如果您有肉色直方图(例如,色相饱和度直方图),则可以使用它来查找图像中的肉色区域:

它是如何工作的?

  • 我们通过使用皮肤示例来解释这一点:
  • 假设您已经根据下图获得了皮肤直方图(色相饱和度)。此外,直方图将是我们的模型直方图(我们知道它代表了肤色的样本)。您应用了一些蒙版来仅捕获皮肤区域的直方图
  •  

  • 现在,让我们想象一下,你得到另一个手部图像(测试图像),如下所示:(及其各自的直方图):

     

  • 我们想要做的是使用我们的模型直方图(我们知道它代表皮肤色调)来检测测试图像中的皮肤区域。步骤如下
    1. 在我们的测试图像的每个像素即p(i,j)中,收集数据并找到该像素的相应箱位置即 h{i,j}, s{i,j} )。
    2. 在相应的 bin 中查找模型直方图  h{i,j}, s{i,j}  - 并读取 bin 值。
    3. 将此图柱值存储在新图像 (BackProjection) 中。此外,您可以考虑先对模型直方图进行归一化,以便您可以看到测试图像的输出。
    4. 应用上述步骤,我们得到以下测试图像的 BackProjection 图像:

  1. 在统计方面,存储在 BackProjection 中的值表示测试图像中的像素属于皮肤区域的概率,基于我们使用的模型直方图。例如,在我们的测试图像中,较亮的区域更有可能是皮肤区域(实际上确实如此),而较暗区域的可能性较小(请注意,这些“黑暗”区域属于带有一些阴影的表面,这反过来又会影响检测)。

C++代码
 

  • 这个程序是做什么的?
    • 加载图像
    • 将原始格式转换为 HSV 格式,并仅分离用于直方图的 Hue 通道(使用 OpenCV 函数 cv::mixChannels )
    • 让用户输入用于计算直方图的箱数。
    • 计算直方图(并在条柱更改时更新它)和同一图像的背投。
    • 在窗口中显示背投和直方图。

  • 可下载代码
    • 单击此处获取基本版本(在本教程中解释)。
    • 对于稍微花哨的东西(使用 H-S 直方图和 floodFill 为皮肤区域定义蒙版),您可以查看改进的演示
    • ...或者,您可以随时查看示例中的经典 CamshiftDemo。
  • 代码一览:
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"#include <iostream>using namespace cv;
using namespace std;Mat hue;
int bins = 25;void Hist_and_Backproj(int, void* );int main( int argc, char* argv[] )
{CommandLineParser parser( argc, argv, "{@input |Back_Projection_Theory0.jpg| input image}" );samples::addSamplesDataSearchSubDirectory("doc/tutorials/imgproc/histograms/back_projection/images");Mat src = imread(samples::findFile(parser.get<String>( "@input" )) );if( src.empty() ){cout << "Could not open or find the image!\n" << endl;cout << "Usage: " << argv[0] << " <Input image>" << endl;return -1;}Mat hsv;cvtColor( src, hsv, COLOR_BGR2HSV );hue.create(hsv.size(), hsv.depth());int ch[] = { 0, 0 };mixChannels( &hsv, 1, &hue, 1, ch, 1 );const char* window_image = "Source image";namedWindow( window_image );createTrackbar("* Hue bins: ", window_image, &bins, 180, Hist_and_Backproj );Hist_and_Backproj(0, 0);imshow( window_image, src );// Wait until user exits the programwaitKey();return 0;
}void Hist_and_Backproj(int, void* )
{int histSize = MAX( bins, 2 );float hue_range[] = { 0, 180 };const float* ranges[] = { hue_range };Mat hist;calcHist( &hue, 1, 0, Mat(), hist, 1, &histSize, ranges, true, false );normalize( hist, hist, 0, 255, NORM_MINMAX, -1, Mat() );Mat backproj;calcBackProject( &hue, 1, 0, hist, backproj, ranges, 1, true );imshow( "BackProj", backproj );int w = 400, h = 400;int bin_w = cvRound( (double) w / histSize );Mat histImg = Mat::zeros( h, w, CV_8UC3 );for (int i = 0; i < bins; i++){rectangle( histImg, Point( i*bin_w, h ), Point( (i+1)*bin_w, h - cvRound( hist.at<float>(i)*h/255.0 ) ),Scalar( 0, 0, 255 ), FILLED );}imshow( "Histogram", histImg );
}

解释

读取输入图像:

CommandLineParser parser( argc, argv, "{@input |Back_Projection_Theory0.jpg| input image}" );samples::addSamplesDataSearchSubDirectory("doc/tutorials/imgproc/histograms/back_projection/images");Mat src = imread(samples::findFile(parser.get<String>( "@input" )) );if( src.empty() ){cout << "Could not open or find the image!\n" << endl;cout << "Usage: " << argv[0] << " <Input image>" << endl;return -1;}

将其转换为 HSV 格式:

 Mat hsv;cvtColor( src, hsv, COLOR_BGR2HSV );

在本教程中,我们将仅将 Hue 值用于我们的一维直方图(如果您想使用更标准的 H-S 直方图,请查看上面链接中的更高级代码,这会产生更好的结果):

 hue.create(hsv.size(), hsv.depth());int ch[] = { 0, 0 };mixChannels( &hsv, 1, &hue, 1, ch, 1 );
  • 如您所见,我们使用函数 cv::mixChannels 仅从 hsv 图像中获取通道 0(色相)。它获取以下参数:
    • &HSV:将从中复制通道的源数组
    • 1:源数组的数量
    • 色相(&C):复制通道的目标数组
    • 1:目标数组的数量
    • ch[] = {0,0}:指示如何复制通道的索引对数组。在本例中,将 &hsv 的 Hue(0) 通道复制到 &hue 的 0 通道(1 通道)
    • 1:索引对数
  • 为用户创建用于输入图格值的跟踪栏。对 Trackbar 的任何更改都意味着对 Hist_and_Backproj回调函数的调用。

 const char* window_image = "Source image";namedWindow( window_image );createTrackbar("* Hue bins: ", window_image, &bins, 180, Hist_and_Backproj );Hist_and_Backproj(0, 0);

显示图像并等待用户退出程序:

 imshow( window_image, src );// Wait until user exits the programwaitKey();

Hist_and_Backproj功能:初始化 cv::calcHist 所需的参数。条柱数量来自 Trackbar:

 int histSize = MAX( bins, 2 );float hue_range[] = { 0, 180 };const float* ranges[] = { hue_range };

计算直方图并将其归一化为范围 [0,255]

 Mat hist;calcHist( &hue, 1, 0, Mat(), hist, 1, &histSize, ranges, true, false );normalize( hist, hist, 0, 255, NORM_MINMAX, -1, Mat() );

 通过调用函数 cv::calcBackProject 获取同一图像的反向投影

 Mat backproj;calcBackProject( &hue, 1, 0, hist, backproj, ranges, 1, true );
  • 所有参数都是已知的(与用于计算直方图的参数相同),只是我们添加了 BackProj 矩阵,它将存储源图像 (&hue) 的反向投影
  • 显示 backproj:

 imshow( "BackProj", backproj );

绘制图像的一维色相直方图:

 int w = 400, h = 400;int bin_w = cvRound( (double) w / histSize );Mat histImg = Mat::zeros( h, w, CV_8UC3 );for (int i = 0; i < bins; i++){rectangle( histImg, Point( i*bin_w, h ), Point( (i+1)*bin_w, h - cvRound( hist.at<float>(i)*h/255.0 ) ),Scalar( 0, 0, 255 ), FILLED );}imshow( "Histogram", histImg );

结果

以下是使用示例图像的输出(你猜怎么着?另一只手)。您可以使用 bin 值,您将观察它如何影响结果:

参考文献:

1、《Back Projection》-----Ana Huamán

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/4599.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

stm32单片机开发二、定时器-内部时钟中断和外部时钟中断、编码器

定时器本质就是一个计数器 案例&#xff1a;定时器定时中断 内部时钟中断 Timer_Init(); //定时中断初始化 /*** 函 数&#xff1a;定时中断初始化* 参 数&#xff1a;无* 返 回 值&#xff1a;无*/ void Timer_Init(void) {/*开启时钟*/RCC_APB1PeriphClockCmd(RCC…

纯血鸿蒙APP实战开发——Navigation实现多设备适配案例

介绍 在应用开发时&#xff0c;一个应用需要适配多终端的设备&#xff0c;使用Navigation的mode属性来实现一套代码&#xff0c;多终端适配。 效果图预览 使用说明 将程序运行在折叠屏手机或者平板上观看适配效果。 实现思路 本例涉及的关键特性和实现方案如下&#xff1a…

HTML5(2)

目录 一.列表、表格、表单 1.列表标签 2.表格 4.无语义的布局标签 5.字符实体 6.综合案例--1 7.综合案例--表单 一.列表、表格、表单 1.列表标签 1.1 无序列表 1.2 有序列表 1.3 定义列表 定义列表一般用于网页底部的帮助中心 2.表格 2.1 2.2 表格结构标签 shiftaltf 格…

创建基于时间的 UUID

概述 在本文中&#xff0c;我们将会 对 UUIDs 和基于时间的 UUIDs&#xff08;time-based UUIDs&#xff09; 进行一些探讨。 当我们在对基于时间的 UUIDs 进行选择的时候&#xff0c;总会遇到一些好的方面和不好的方面&#xff0c;如何进行选择&#xff0c;也是我们将要简要…

2路模拟音频光端机 JR-CA02

概述 JR-CA02光端机由发送机JR-CA02 Tansmitter和接收机JR-CA02 Receiver组成&#xff0c;通过一定距离长度的光纤相连接&#xff0c;传输2路Audio模拟音频&#xff08;即1路立体声&#xff09;。且每路音频分配输出。 JR-CA02光端机具有运行主要技术参数的监测功能&#xff…

【AGX】Ubuntu20.04 + ROS_ noetic+ 大疆Mid360激光 雷达评测

大家好&#xff0c;我是虎哥&#xff0c;最近组装机器人&#xff0c;使用到了大疆孵化的圳市览沃科技有限公司&#xff08;简称Livox览沃科技&#xff09;推出的觅道系列全新混合固态激光雷达Mid-360&#xff0c;顺便试试效果&#xff0c;也记录一下使用入门过程。 "觅道M…

MATLAB : interp1()用法介绍

目录 一、基本语法&#xff1a; 二、实例&#xff1a; 1.样条拟合减振器阻尼曲线 ​2.PP拟合时间温度曲线 interp1 是 MATLAB 中的一个函数&#xff0c;用于在一维数据上执行插值操作。这个函数可以帮助你估计或计算已知数据点之间未知点的值。以下是 interp1 函数的基本用…

分类预测 | Matlab实现POA-BP鹈鹕算法优化BP神经网络多特征分类预测

分类预测 | Matlab实现POA-BP鹈鹕算法优化BP神经网络多特征分类预测 目录 分类预测 | Matlab实现POA-BP鹈鹕算法优化BP神经网络多特征分类预测分类效果基本介绍程序设计参考资料 分类效果 基本介绍 1.Matlab实现POA-BP鹈鹕算法优化BP神经网络多特征分类预测&#xff08;Matlab实…

MySQL——88张表汇总——DDL+外键

外键er图 88张表 /* Navicat MySQL Data TransferSource Server : MyList Source Server Version : 50726 Source Host : localhost:3309 Source Database : schooldbTarget Server Type : MYSQL Target Server Version : 50726 File Encoding …

《深入解析Windows操作系统》第3章读书笔记

1、陷阱分发&#xff1a;中断和异常是导致处理器转向正常控制流之外代码的两种操作系统条件。陷阱的定义如下&#xff1a;当异常或者中断发生时&#xff0c;处理器捕捉到一个执行线程&#xff0c;并且将控制权转移到操作系统中某一个固定地址处。在Windows系统中&#xff0c;处…

Pycharm:常用插件安装和使用

简介&#xff1a;好用的插件可以美化界面或者提升效率&#xff0c;使工作事半功倍。 推荐插件&#xff1a; 1、CSV插件&#xff1a;美化csv数据展示 2、Translation&#xff1a;翻译的插件&#xff0c;可以进行中英互译 3、CodeGlance&#xff1a;代码小地图 4、Markdown …

代码随想录:二叉树29-30

目录 701.二叉搜索树中的插入操作 题目 代码&#xff08;迭代法走一边&#xff09; 代码&#xff08;递归法走一边&#xff09; 450.删除二叉搜索树中的节点 题目 代码&#xff08;递归法走一边&#xff09; 701.二叉搜索树中的插入操作 题目 给定二叉搜索树&#xff…

【软考高项】二十七、范围管理6个过程

一、规划范围管理 1、定义、作用 定义&#xff1a;为了记录如何定义、确认和控制项目范围及产品范围&#xff0c;而创建范围管理计划的过程作用&#xff1a;在整个项目期间对如何管理范围提供指南和方向 2、输入 项目章程 项目管理计划&#xff1a;质量管理计划、项目生命周…

编程本源

文章目录 引言编程的本质工作与编程编程的未来 引言 知乎上有一个热门的问题&#xff0c;什么是人生的顶级享受&#xff1f; 看到这个问题我回想到了多年前&#xff0c;那个炎热的午后&#xff0c;我在学校的图书馆里&#xff0c;一边参照书籍&#xff0c;一边用着一部破旧的t…

使用STM32CubeMX对STM32F4的CAN1/2/3配置及接收中断开启

目录 1. CAN配置1.1引脚&#xff08;STM32F413VGT6-LQFP100&#xff09;1.2 时钟1.3 RCC配置1.4 CAN1配置1.5 CAN2配置1.6 CAN3配置1.7 输出设置 2. CAN代码2.1 CAN初始化2.2 CAN滤波器设置2.3 CAN使能2.4 激活中断2.5 CAN发送函数2.6 CAN回调函数2.7 main之后的代码 1. CAN配置…

【无监督+自然语言】 GPT,BERT, GPT-2,GPT-3 生成式预训练模型方法概述 (Generative Pre-Traning)

主要参考 【GPT&#xff0c;GPT-2&#xff0c;GPT-3 论文精读【李沐论文精读】-2022.03.04】 https://www.bilibili.com/video/BV1AF411b7xQ/ 大语言模型综述&#xff1a; https://blog.csdn.net/imwaters/article/details/137019747 GPT与chatgpt的关系 图源&#xff1a;L…

java多功能手机

随着科技的发展&#xff0c;手机的使用已经普及到每个家庭甚至个人&#xff0c;手机的属性越来越强大&#xff0c;功能也越来越多&#xff0c;因此人们在生活中越来越依赖于手机。 任务要求&#xff0c;使用所学知识编写一个手机属性及功能分析程序设计&#xff0c;测试各个手机…

JEECG/SpringBoot集成flowable流程框架

IDEA安装Flowable BPMN visualizer插件 pom.xml中引入flowable相关依赖 <dependency><groupId>org.flowable</groupId><artifactId>flowable-spring-boot-starter</artifactId><version>6.7.2</version></dependency><depe…

PHP 错误 Unparenthesized `a ? b : c ? d : e` is not supported

最近在一个新的服务器上测试一些老代码的时候得到了类似上面的错误&#xff1a; [Thu Apr 25 07:37:34.139768 2024] [php:error] [pid 691410] [client 192.168.1.229:57183] PHP Fatal error: Unparenthesized a ? b : c ? d : e is not supported. Use either (a ? b : …

Docker镜像和容器操作

目录 一.Docker镜像创建与操作 1. 搜索镜像 2. 获取镜像 3. 镜像加速下载 4. 查看镜像信息 5. 查看下载的镜像文件信息 ​编辑6. 查看下载到本地的所有镜像 7. 根据镜像的唯一标识ID号&#xff0c;获取镜像详细信息 8. 为本地的镜像添加新的标签 9. 删除镜像 10. 存入…