14. RTCP 协议

RTCP 协议概述

RTCP(Real-time Transport Control Protocol 或 RTP Control Protocol 或简写 RTCP),实时传输控制协议,是实时传输协议(RTP)的一个姐妹协议。
注:RTP 协议和 RTP 控制协议(RTCP)一起使用,而且它是建立在 UDP 协议上的(一般用于视频会议)

RTCP 工作机制

当应用程序开始一个 rtp 会话时将使用两个端口:一个给 rtp,一个给 rtcp。rtp 本身并不能为按顺序传送数据包提供可靠的传送机制,也不提供流量控制或拥塞控制,它依靠 rtcp 提供这些服务。

RTCP 负责管理传输质量在当前应用进程之间交换控制信息。在 RTP 会话期间,各参与者周期性地传送 RTCP 包,包中含有已发送的数据包的数量、丢失的数据包的数量等统计资料。因此,服务器可以利用这些信息动态地改变传输速率,甚至改变有效载荷类型。

RTP 和 RTCP 配合使用,能以有效的反馈和最小的开销使传输效率最佳化,故特别适合传送网上的实时数据。根据用户间的数据传输反馈信息,可以制定流量控制的策略,而会话用户信息的交互,可以制定会话控制的策略。

RTCP 数据报

在 RTCP 通信控制中,RTCP 协议的功能是通过不同的 RTCP 数据报来实现的,主要有如下几种类型:
在这里插入图片描述
SR:发送端报告,所谓发送端是指发出 RTP 数据报的应用程序或者终端,发送端同时也可以是接收端。
RR:接收端报告,所谓接收端是指仅接收但不发送 RTP 数据报的应用程序或者终端。
SDES:源描述,主要功能是作为会话成员有关标识信息的载体,如用户名、邮件地址、电话号码等,此外还具有向会话成员传达会话控制信息的功能。
BYE:通知离开,主要功能是指示某一个或者几个源不再有效,即通知会话中的其他成员自己将退出会话。
APP:由应用程序自己定义,解决了 RTCP 的扩展性问题,并且为协议的实现者提供了很大的灵活性。
这些RTCP包类型中,SR(Sender Report)和RR(Receiver Report)在实时流中经常被使用。
然后还有一些扩展的:
在这里插入图片描述

RTCP SR 包文详解

在这里插入图片描述

  1. 版本(V):2比特,RTCP版本。
  2. 填充(P):1比特,如果该位置为1,则该RTCP包的尾部就包含附加的填充字节。
  3. 接收报告计数器(RC):5比特,该SR包中的接收报告块的数目,可以为零。
  4. 包类型(PT):8比特,SR包是200。
  5. 长度域(Length):16比特,RTCP包的长度,包括填充的内容。
  6. 同步源(SSRC of sender):32比特,SR包发送者的同步源标识符。与对应RTP包中的SSRC一样。
  7. NTP timestamp(MSW+LWS):64比特, 表示发送此报告时以挂钟时间测量的时间点。 结合来自各个接收器的接收报告中返回的时间戳,它可用于估计往返于接收器的往返传播时间。
  8. RTP timestamp:32比特,与NTP时间戳对应,与RTP数据包中的RTP时间戳具有相同的单位和随机初始值。
  9. Sender’s packet count:32比特,从开始发送包到产生这个SR包这段时间里,发送者发送的RTP数据包的总数. SSRC改变时,这个域清零。
  10. Sender`s octet count:32比特,从开始发送包到产生这个SR包这段时间里,发送者发送的净荷数据的总字节数(不包括头部和填充)。发送者改变其SSRC时,这个域要清零。
  11. SSRC_n :32比特,在此块中报告其接收的发送者的 SSRC 标识符,因为可能有多个接收者。
  12. 丢失率(Fraction Lost):8比特,表明从上一个SR或RR包发出以来从同步源n(SSRC_n)来的RTP数据包的丢失率
  13. 累计的包丢失数目(cumulative number of packets lost C ):24比特,从开始接收到SSRC_n的包到发送SR,从SSRC_n传过来的RTP数据包的丢失总数。
  14. 收到的扩展最大序列号(extended highest sequence number received EHSN ):从SSRC_n收到的RTP数据包中最大的序列号
  15. 接收抖动(Interarrival jitter):32比特,RTP数据包接受时间的统计方差估计
  16. 上次SR时间戳(Last SR,LSR):32比特,取最近从SSRC_n收到的SR包中的NTP时间戳的中间32比特。如果目前还没收到SR包,则该域清零
  17. 上次SR以来的延时(Delay since last SR,DLSR):32比特,上次从SSRC_n收到SR包到发送本报告的延时
  18. 扩展字段 profile-specific extensions

其实我们可以发现他是可以分成3大部分的:

  • header 头部信息
  • sender Information block
    在这里插入图片描述
  • report block
    这个是有多个的,因为可能有多个接收者。
    在这里插入图片描述
    在这里插入图片描述

RTCP RR 包文详解

除包类型代码外,SR与RR间唯一的差别是源报告包含有一个20字节发送者信息段。活动源在发出最后一个数据包之后或前一个数据包与下一个数据包间隔期间发送SR;否则,就发送RR。
SR和RR包都可没有接收报告块也可以包括多个接收报告块,其发布报告表示的源不一定是在CSRC列表上的起作用的源,每个接收报告块提供从特殊源接收数据的统计。最大可有31个接收报告块嵌入在SR 或 RR包中。
丢失包累计数差别给出间隔期间丢包的数量,而系列号的差别给出间隔期间希望发送的包数量,两者之比等于经过间隔期间包丢失百分比。
从发送者信息,第三方监控器可计算载荷平均数据速率与没收到数据间隔的平均包速率,两者比值给出平均载荷大小。
如假设包丢失与包大小无关,那么特殊接收者收到的包数量给出此接收者收到的表观流量。
格式如下图所示:
在这里插入图片描述

Source Description RTCP Packets(源点描述)

资源描述协议,最常用的就是传递CNAME名称,用于标识会话,当SSRC发生变化也能很好的匹配会话。协议ID:202。
SDES源描述包提供了直观的文本信息来描述会话的参加者,包括CNAME、NAME、EMAIL、PHONE、LOC等源描述项,这些为接收方获取发送方的有关信息提供了方便。SDES 包由包头与数据块组成,数据块可以没有,也可有多个。
格式如下图所示:
在这里插入图片描述
V, P, PT, L:和RR包的描述一样,只不过其PT值为202

SC:5比特,此 SDES 数据包中包含的 SSRC/CSRC 块的数量。

CNAME: 规范终端标识SDES项,类似SSRC标识,RTCP为RTP连接中每一个参加者赋予唯一一个CNAME标识。在发生冲突或重启程序时,由于随机分配的SSRC标识可能发生变化,CNAME项可以提供从SSRC标识到仍为常量的源标识的绑定。为方便第三方监控,CNAME应适合程序或人员定位源。不同的 SDES 项根据类型-长度-值方案进行编码。 目前,CNAME、NAME、EMAIL、PHONE、LOC、TOOL、NOTE 和 PRIV 项目在 [RFC1889] 中定义。CNAME 项在每个 SDES 数据包中都是强制性的,而这又是每个复合 RTCP 数据包的强制性部分。与 SSRC 标识符一样,CNAME 必须与其他所有会话参与者的 CNAME 不同。 但不是随机选择 CNAME 标识符,CNAME 应该允许人或程序都可以通过 CNAME 内容来定位源。
在这里插入图片描述
在这里插入图片描述

RTCP BYE 报文介绍

BYE指示一个或者多个源退出会话。协议ID:203。
参与者发送 BYE 数据包以指示一个或多个源不再活动,可选择给出离开的理由。

作为可选项,BYE包可包括一个8位八进制计数,后跟文本信息,表示离开原因,如:“cameramalfunction"或"RTPloop detected”。字符串的编码与在SDES 项中所描述的相同。如字符串信息至BYE包下32位边界结束处,字符串就不以空结尾;否则,BYE包以空八进制填充。

格式如下图所示:
在这里插入图片描述
源数量(5bit):指示SSRC/CSRC的总数量,在头后面接的源的个数。
长度(8bit):后面字符串长度;
原因(<255):原因小于255字节。

RTCP APP 报文介绍

APP报文用于新应用程序或者新特性开发的实验使用,无需数据包类型值注册。协议ID:204。

在这里插入图片描述
子协议(5bit):自定义协议。
名字(32bit):ascii
应用数据(n*32bit):必须为32bit的整数倍。
在这里插入图片描述

RTCP FB 协议介绍

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/25817.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Postgresql源码(135)生成执行计划——Var的调整set_plan_references

1 总结 set_plan_references主要有两个功能&#xff1a; 拉平&#xff1a;生成拉平后的RTE列表&#xff08;add_rtes_to_flat_rtable&#xff09;。调整&#xff1a;调整前每一层计划中varno的引用都是相对于本层RTE的偏移量。放在一个整体计划后&#xff0c;需要指向一个统一…

Material-UI create-react-app 创建移动端 H5

当使用 create-react-app 和 Material-UI 来创建移动端 H5 页面时,你需要考虑几个关键点来确保页面在移动设备上表现良好。以下是一些步骤和最佳实践: 创建 React 项目 使用 create-react-app 快速创建一个新的 React 项目: npx create-react-app my-mobile-app cd my-mobil…

京东一面测开(KPI)

京东一面测开凉经&#xff08;笔试ak&#xff09; 3.8 面试官&#xff1a;你很优秀啊&#xff0c;你不用谦虚 没问技术相关&#xff0c;问了如何设计测试用例步骤一些理论&#xff1a; 什么是软件测试&#xff1f;其目的是什么&#xff1f; 软件测试有哪些类型&#xff1f;请列…

架构设计-全局异常处理器404、405的问题

java web 项目中经常会遇到异常处理的问题&#xff0c;普遍的做法是使用全局异常处理&#xff0c;这样做有以下几种原因&#xff1a; 集中化处理&#xff1a;全局异常处理允许你在一个集中的地方处理整个应用程序中的异常。这有助于减少代码重复&#xff0c;因为你不必在每个可…

GCROOT节点有哪些?

GCROOT节点在Java虚拟机中扮演着判断对象是否存活的起点角色。它们主要包括以下几种类型&#xff1a; 虚拟机栈中引用的对象&#xff1a; 这通常指的是各个线程被调用的方法堆栈中使用到的参数、局部变量、临时变量等。这些对象在虚拟机栈中被直接引用&#xff0c;因此它们及其…

项目方案:社会视频资源整合接入汇聚系统解决方案(五)

目录 一、概述 1.1 应用背景 1.2 总体目标 1.3 设计原则 1.4 设计依据 1.5 术语解释 二、需求分析 2.1 政策分析 2.2 业务分析 2.3 系统需求 三、系统总体设计 3.1设计思路 3.2总体架构 3.3联网技术要求 四、视频整合及汇聚接入 4.1设计概述 4.2社会视频资源分…

QT项目实战: 五子棋小游戏

目录 内容介绍 一.添加头文件 二.画棋盘 1.宏定义 2.棋盘 三.画棋子 四.获取棋子摆放位置 五.判断棋子存在 六.判断胜利 1.变量定义和初始化 2.检查获胜条件 3.游戏结束处理 七.重绘 八.效果展示 九.代码 1.mainwindow.h 2.mainwindow.cpp 3.chessitem.h 4…

HTML 中使用 JavaScript 的具体方式

文章目录 一、JavaScript 脚本添加方式1.1 内联 JavaScript1.2 内嵌 JavaScript1.3 外部引用 JavaScript 二、外部引用 JavaScript 的注意事项 一、JavaScript 脚本添加方式 在 HTML 文件中使用 JavaScript 代码主要由以下三种方法&#xff1a; 内联内嵌外部引用 1.1 内联 J…

【python】在【机器学习】与【数据挖掘】中的应用:从基础到【AI大模型】

目录 &#x1f497;一、Python在数据挖掘中的应用&#x1f495; &#x1f496;1.1 数据预处理&#x1f49e; &#x1f496;1.2 特征工程&#x1f495; &#x1f497;二、Python在机器学习中的应用&#x1f495; &#x1f496;2.1 监督学习&#x1f49e; &#x1f496;2.2…

【MySQL】(基础篇七) —— 通配符和正则表达式

通配符和正则表达式 本章介绍什么是通配符、如何使用通配符以及怎样使用LIKE操作符进行通配搜索&#xff0c;以便对数据进行复杂过滤&#xff1b;如何使用正则表达式来更好地控制数据过滤。 目录 通配符和正则表达式LIKE操作符百分号(%)通配符下划线(_)通配符 通配符使用技巧正…

深入理解 C++ 智能指针

文章目录 一、引言二、 原始指针的问题1、原始指针的问题2、智能指针如何解决这些问题 三、智能指针的类型四、std::shared_ptr1、shared_ptr使用2、shared_ptr的使用注意事项3、定制删除器4、shared_ptr的优缺点5、shared_ptr的模拟实现 五、std::unique_ptr1、unique_ptr的使…

SpringSecurity入门(三)

12、密码加密 12.1、不指定具体加密方式&#xff0c;通过DelegatingPasswordEncoder&#xff0c;根据前缀自动选择 PasswordEncoder passwordEncoder PasswordEncoderFactories.createDelegatingPasswordEncoder();12.2、指定具体加密方式 // Create an encoder with streng…

Java中的CAS无锁并发原理是怎样的

CAS&#xff08;Compare And Swap&#xff09;即比较并交换&#xff0c;是一种无锁并发算法的核心原理。 简单来说&#xff0c;CAS 原理通过以下三个步骤来实现&#xff1a; 1. 读取当前值&#xff1a;获取目标变量当前的值。 2. 比较预期值&#xff1a;将读取到的值与预…

逆运动学IK原理举例说明

逆运动学IK原理举例说明 逆运动学(Inverse Kinematics, IK)是计算机器人各个关节的位置和角度,使机器人末端(如手或脚)达到目标位置的过程。IK 是机器人学中的一个重要问题,因为它允许我们从任务空间(如末端执行器的位置和姿态)控制机器人关节空间(如关节角度)。 逆…

【iOS】UI学习——登陆界面案例、照片墙案例

文章目录 登陆界面案例照片墙案例 登陆界面案例 这里通过一个登陆界面来复习一下前面学习的内容。 先在接口部分定义两个UILabel、两个UITextField、两个UIButton按键&#xff1a; #import <UIKit/UIKit.h>interface ViewController : UIViewController {UILabel* _lb…

2024050501-重学 Java 设计模式《实战命令模式》

重学 Java 设计模式&#xff1a;实战命令模式「模拟高档餐厅八大菜系&#xff0c;小二点单厨师烹饪场景」 一、前言 持之以恒的重要性 初学编程往往都很懵&#xff0c;几乎在学习的过程中会遇到各种各样的问题&#xff0c;哪怕别人那运行好好的代码&#xff0c;但你照着写完…

深入解析分布式链路追踪:原理、技术及应用

目录 分布式链路追踪简介分布式链路追踪的基本概念 Span 和 Trace上下文传播采样策略 分布式链路追踪的工作原理常见的分布式链路追踪系统 ZipkinJaegerOpenTelemetry 分布式链路追踪的技术实现 数据收集数据传输数据存储数据展示 分布式链路追踪的应用场景 性能优化故障排除依…

适配Android12启动页

今天我们讲个什么话题呢&#xff1f;我们今天讲的内容是&#xff0c;Android12新启动页的支持API。 启动页我想大家都不陌生吧&#xff0c;通常的写法就是先创建一个SplashActivity&#xff0c;在onCreate中 Handler(Looper.getMainLooper()).postDelayed({// 在这里跳转主界…

人月神话珍藏版系列文章二---人月神话

前言: 在众多软件项目中,缺乏合理的进度安排是造成项目滞后的最主要的原因,它比其他所有因素加起来的影响还要大。软件项目的进度安排不合理普遍发生的原因是什么呢? 第一,在实际的工作当中,估算技术还不够成熟,说的更加的严重些,它们反映的是一个很不真实的假设,一切…

Python数据分析与机器学习在电子商务推荐系统中的应用

文章目录 &#x1f4d1;引言一、推荐系统的类型二、数据收集与预处理2.1 数据收集2.2 数据预处理 三、基于内容的推荐3.1 特征提取3.2 计算相似度3.3 推荐物品 四、协同过滤推荐4.1 基于用户的协同过滤4.2 基于物品的协同过滤 五、混合推荐与评估推荐系统5.1 结合推荐结果5.2 评…