Postgresql源码(135)生成执行计划——Var的调整set_plan_references

1 总结

  • set_plan_references主要有两个功能:
    • 拉平:生成拉平后的RTE列表(add_rtes_to_flat_rtable)。
    • 调整:调整前每一层计划中varno的引用都是相对于本层RTE的偏移量。放在一个整体计划后,需要指向一个统一的RTE列表,所以需要把varno调整下指向拉平后的RTE表。
    • 例如下面计划中,RTE记录了6张表:
      • 1 → `{rtekind = RTE_RELATION, relid = 16656, inh = false, relkind = 114 ‘r’} -> student
      • 2 → `{rtekind = RTE_RELATION, relid = 16671, inh = false, relkind = 114 ‘r’} -> score
      • 3 → `{rtekind = RTE_JOIN, relid = 0, inh = false, relkind = 0 } -> {score join student}
      • 4 → `{rtekind = RTE_RELATION, relid = 16661, inh = false, relkind = 114 ‘r’} -> course
      • 5 → `{rtekind = RTE_JOIN, relid = 0, inh = false, relkind = 0 } -> {被优化掉的join course}
    • Result节点的第一列是STUDENT.sname,他的varno一开始是1,varattno是2,显然他不应该直接引用RTE中的某一张表,因为Result节点的数据应该使用下面SORT节点中取出来的,所以:
      • varno被调整为-2(表示引用OUTTER节点也就是LEFT树返回的结果)
      • varattno被调整1,表示从结果中拿第一列。
explain
SELECT STUDENT.sname, random(), SCORE.degree
FROM STUDENT
LEFT JOIN SCORE ON STUDENT.sno = SCORE.sno
LEFT JOIN COURSE ON SCORE.cno = COURSE.cno
ORDER BY STUDENT.sno;QUERY PLAN
------------------------------------------------------------------------------------Result  (cost=182.67..213.27 rows=2040 width=54)->  Sort  (cost=182.67..187.77 rows=2040 width=46)Sort Key: student.sno->  Hash Right Join  (cost=34.75..70.53 rows=2040 width=46)Hash Cond: (score.sno = student.sno)->  Seq Scan on score  (cost=0.00..30.40 rows=2040 width=12)->  Hash  (cost=21.00..21.00 rows=1100 width=42)->  Seq Scan on student  (cost=0.00..21.00 rows=1100 width=42)

上面用例经过set_plan_references调整前后的完整例子:
在这里插入图片描述

2 数据结构

PlannerInfo

当前查询优化的状态,包含了当前查询的所有信息:

  • 当前查询的目标列表(target list)
  • 子句(例如,WHERE、GROUP BY、ORDER BY 等)
  • 范围表(range table)
  • 可用的索引信息
  • 统计信息
  • 子查询和参数信息
  • 优化器的各种临时数据和结果

PlannerGlobal

全局结构,包含了跨多个查询级别的信息。例如一个包含子查询或CTE的查询中,每个子查询都会有自己的 PlannerInfo结构,会共享同一个PlannerGlobal。包含了:

  • 全局范围表(finalrtable)
  • 全局子计划列表
  • 全局初始化计划列表
  • 全局参数表达式列表
  • 重写规则和其他全局状态信息

varno宏

#define    INNER_VAR		(-1)	/* reference to inner subplan */
#define    OUTER_VAR		(-2)	/* reference to outer subplan */
#define    INDEX_VAR		(-3)	/* reference to index column */
#define    ROWID_VAR		(-4)	/* row identity column during planning */

3 set_plan_references

1 计算全局flat_rtable

set_plan_references → add_rtes_to_flat_rtable

首先把引用的rtable全部拉平到一个级别,重新排列RTE。

具体在PlannerGlobal中构造全局范围表finalrtable,所有子PlannerInfo共享的一套RTE。

	p *root->glob->finalrtable
$7 = {type = T_List, length = 5, max_length = 5, elements = 0x3085520, initial_elements = 0x3085520}

add_rtes_to_flat_rtable后生成五个RTE:

  • RangeTblEntry {rtekind = RTE_RELATION, relid = 16656, inh = false, relkind = 114 'r'}
  • RangeTblEntry {rtekind = RTE_RELATION, relid = 16671, inh = false, relkind = 114 'r'}
  • RangeTblEntry {rtekind = RTE_JOIN, relid = 0, inh = false, relkind = 0}
  • RangeTblEntry {rtekind = RTE_RELATION, relid = 16661, inh = false, relkind = 114 'r'}
  • RangeTblEntry {rtekind = RTE_JOIN, relid = 0, inh = false, relkind = 0}

PlannerInfo→PlannerGlobal:

2 开始修正RTE的引用

set_plan_references → set_plan_refs

2.1 处理Result

  • set_plan_refs

    • case T_Result: 处理result子树
    • plan->lefttree = set_plan_refs(root, plan->lefttree, rtoffset); 递归处理左树
    • plan->righttree = set_plan_refs(root, plan->righttree, rtoffset); 递归处理右树
  • 根据内层的sort节点,重新排列result节点的三个var的varno和varattno,result已经是最外层节点了,当前使用到的var还是从sort节点继承的,需要修复下。

处理前 vs 处理后
在这里插入图片描述

set_plan_refs处理T_Result节点:

set_plan_refs......case T_Result:Result     *splan = (Result *) plan;if (splan->plan.lefttree != NULL)set_upper_references(root, plan, rtoffset);......// subplan 是 SORT节点// subplan->targetlist 中返回三列:STUDENT.sname, SCORE.degree,  STUDENT.sno// 注意缺了一列random函数subplan_itlist = build_tlist_index(subplan->targetlist);	
  • subplan->targetlist
    • varno = 1, varattno = 2, vartype = 1043
    • varno = 2, varattno = 3, vartype = 23
    • varno = 1, varattno = 1, vartype = 23
  • subplan_itlist
    • subplan_itlist->tlist = subplan->targetlist
    • subplan_itlist->vars[0] = {varno = 1, varattno = 2, resno = 1, varnullingrels = 0x0}
    • subplan_itlist->vars[1] = {varno = 2, varattno = 3, resno = 2, varnullingrels = ...}
    • subplan_itlist->vars[2] = {varno = 1, varattno = 1, resno = 3, varnullingrels = 0x0}
				foreach(l, plan->targetlist)...newexpr = fix_upper_expr(...)...// 计算完成plan->targetlist = output_targetlist;
  • output_targetlist
    • expr = 0x308f0c8, resno = 1, resname = 0x2f4d670 "sname"
      • varno = OUTER_VAR = -2, varattno = 1, vartype = 1043
    • expr = 0x308f1b8, resno = 2, resname = 0x2f4d7e8 "random"
      • funcid = 1598, funcresulttype = 701, funcretset = false
    • expr = 0x308f258, resno = 3, resname = 0x2f4d928 "degree"
      • varno = OUTER_VAR = -2, varattno = 2, vartype = 23
    • expr = 0x308f2f8, resno = 4, resname = 0x0, ressortgroupref = 1
      • varno = OUTER_VAR = -2, varattno = 3, vartype = 23

2.2 处理SORT

  • set_plan_refs
    • case T_Sort: 处理sort子树set_dummy_tlist_references
    • plan->lefttree = set_plan_refs(root, plan->lefttree, rtoffset); 递归处理左树
    • plan->righttree = set_plan_refs(root, plan->righttree, rtoffset); 递归处理右树

排序只需要引用下面一层的结果即可。

// These plan types don't actually bother to evaluate their
// targetlists, because they just return their unmodified input
// tuples.  Even though the targetlist won't be used by the
// executor, we fix it up for possible use by EXPLAIN (not to
// mention ease of debugging --- wrong varnos are very confusing).set_dummy_tlist_references

2.3 处理Hash Right Join

  • set_plan_refs
    • case T_HashJoin: 处理join子树set_join_references
    • plan->lefttree = set_plan_refs(root, plan->lefttree, rtoffset); 递归处理左树
    • plan->righttree = set_plan_refs(root, plan->righttree, rtoffset); 递归处理右树

在这里插入图片描述
在这里插入图片描述

4 用例

explain
SELECT STUDENT.sname, random(), SCORE.degree
FROM STUDENT
LEFT JOIN SCORE ON STUDENT.sno = SCORE.sno
LEFT JOIN COURSE ON SCORE.cno = COURSE.cno
ORDER BY STUDENT.sno;QUERY PLAN
------------------------------------------------------------------------------------Result  (cost=182.67..213.27 rows=2040 width=54)->  Sort  (cost=182.67..187.77 rows=2040 width=46)Sort Key: student.sno->  Hash Right Join  (cost=34.75..70.53 rows=2040 width=46)Hash Cond: (score.sno = student.sno)->  Seq Scan on score  (cost=0.00..30.40 rows=2040 width=12)->  Hash  (cost=21.00..21.00 rows=1100 width=42)->  Seq Scan on student  (cost=0.00..21.00 rows=1100 width=42)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/25816.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

架构设计-全局异常处理器404、405的问题

java web 项目中经常会遇到异常处理的问题,普遍的做法是使用全局异常处理,这样做有以下几种原因: 集中化处理:全局异常处理允许你在一个集中的地方处理整个应用程序中的异常。这有助于减少代码重复,因为你不必在每个可…

项目方案:社会视频资源整合接入汇聚系统解决方案(五)

目录 一、概述 1.1 应用背景 1.2 总体目标 1.3 设计原则 1.4 设计依据 1.5 术语解释 二、需求分析 2.1 政策分析 2.2 业务分析 2.3 系统需求 三、系统总体设计 3.1设计思路 3.2总体架构 3.3联网技术要求 四、视频整合及汇聚接入 4.1设计概述 4.2社会视频资源分…

QT项目实战: 五子棋小游戏

目录 内容介绍 一.添加头文件 二.画棋盘 1.宏定义 2.棋盘 三.画棋子 四.获取棋子摆放位置 五.判断棋子存在 六.判断胜利 1.变量定义和初始化 2.检查获胜条件 3.游戏结束处理 七.重绘 八.效果展示 九.代码 1.mainwindow.h 2.mainwindow.cpp 3.chessitem.h 4…

【python】在【机器学习】与【数据挖掘】中的应用:从基础到【AI大模型】

目录 💗一、Python在数据挖掘中的应用💕 💖1.1 数据预处理💞 💖1.2 特征工程💕 💗二、Python在机器学习中的应用💕 💖2.1 监督学习💞 💖2.2…

【MySQL】(基础篇七) —— 通配符和正则表达式

通配符和正则表达式 本章介绍什么是通配符、如何使用通配符以及怎样使用LIKE操作符进行通配搜索,以便对数据进行复杂过滤;如何使用正则表达式来更好地控制数据过滤。 目录 通配符和正则表达式LIKE操作符百分号(%)通配符下划线(_)通配符 通配符使用技巧正…

深入理解 C++ 智能指针

文章目录 一、引言二、 原始指针的问题1、原始指针的问题2、智能指针如何解决这些问题 三、智能指针的类型四、std::shared_ptr1、shared_ptr使用2、shared_ptr的使用注意事项3、定制删除器4、shared_ptr的优缺点5、shared_ptr的模拟实现 五、std::unique_ptr1、unique_ptr的使…

SpringSecurity入门(三)

12、密码加密 12.1、不指定具体加密方式,通过DelegatingPasswordEncoder,根据前缀自动选择 PasswordEncoder passwordEncoder PasswordEncoderFactories.createDelegatingPasswordEncoder();12.2、指定具体加密方式 // Create an encoder with streng…

【iOS】UI学习——登陆界面案例、照片墙案例

文章目录 登陆界面案例照片墙案例 登陆界面案例 这里通过一个登陆界面来复习一下前面学习的内容。 先在接口部分定义两个UILabel、两个UITextField、两个UIButton按键&#xff1a; #import <UIKit/UIKit.h>interface ViewController : UIViewController {UILabel* _lb…

2024050501-重学 Java 设计模式《实战命令模式》

重学 Java 设计模式&#xff1a;实战命令模式「模拟高档餐厅八大菜系&#xff0c;小二点单厨师烹饪场景」 一、前言 持之以恒的重要性 初学编程往往都很懵&#xff0c;几乎在学习的过程中会遇到各种各样的问题&#xff0c;哪怕别人那运行好好的代码&#xff0c;但你照着写完…

Python数据分析与机器学习在电子商务推荐系统中的应用

文章目录 &#x1f4d1;引言一、推荐系统的类型二、数据收集与预处理2.1 数据收集2.2 数据预处理 三、基于内容的推荐3.1 特征提取3.2 计算相似度3.3 推荐物品 四、协同过滤推荐4.1 基于用户的协同过滤4.2 基于物品的协同过滤 五、混合推荐与评估推荐系统5.1 结合推荐结果5.2 评…

Qwen2本地部署的实战教程

大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法…

网络安全技术实验一 信息收集和漏洞扫描

一、实验目的和要求 了解信息搜集和漏洞扫描的一般步骤&#xff0c;利用Nmap等工具进行信息搜集并进行综合分析&#xff1b;掌握TCP全连接扫描、TCP SYN扫描的原理,利用Scapy编写网络应用程序&#xff0c;开发端口扫描功能模块&#xff1b;使用漏洞扫描工具发现漏洞并进行渗透测…

8款高效电脑维护与多媒体工具合集!

AI视频生成&#xff1a;小说文案智能分镜智能识别角色和场景批量Ai绘图自动配音添加音乐一键合成视频https://h5.cxyhub.com/?invitationhmeEo7 1. 系统安装利器——WinNTSetup 系统安装利器&#xff0c;目前最好用的系统安装器&#xff0c;Windows系统安装部署工具。支持所…

跟我学,数据结构和组原真不难

我个人认为408中计算机组成原理和数据结构最难 难度排行是计算机组成原理>数据结构>操作系统>计算机网络。 计算机组成原理比较难的原因是&#xff0c;他涉及的硬件的知识比较多&#xff0c;这对于大家来说难度就很高了&#xff0c;特别是对于跨考的同学来说&#x…

ABB机械人模型下载

可以下载不同格式的 https://new.abb.com/products/robotics/zh/robots/articulated-robots/irb-6700 step的打开各部件是分开的&#xff0c;没有装配在一起&#xff0c;打开看单个零件时&#xff0c;我们会发现其各零件是有装配的定位关系的。 新建一个装配环境&#xff0c;点…

【qt】MDI多文档界面开发

MDI多文档界面开发 一.应用场景二.界面设计三.界面类设计四.实现功能1.新建文档2.打开文件3.关闭所有4.编辑功能5.MDI页模式6.瀑布展开模式7.平铺模式 五.总结 一.应用场景 类似于vs的界面功能,工具栏的功能可以对每个文档使用! 二.界面设计 老规矩,边做项目边学! 目标图: 需…

【JMeter接口测试工具】第二节.JMeter项目实战(上)【实战篇】

文章目录 前言项目实战零、接口测试流程一、测试数据准备二、接口功能测试三、掌握测试用例编写四、自动化脚本架构搭建总结 前言 零、接口测试流程 1、制定测试计划,分配任务 2、从 API 文档中提取接口清单&#xff1a;对 API 文档简化,提高测试效率,接口清单就是对 API 文档…

【研发日记】Matlab/Simulink软件优化(三)——利用NaNFlag为数据处理算法降阶

文章目录 前言 背景介绍 初始算法 优化算法 分析和应用 总结 前言 见《【研发日记】Matlab/Simulink软件优化(一)——动态内存负荷压缩》 见《【研发日记】Matlab/Simulink软件优化(二)——通信负载柔性均衡算法》 背景介绍 在一个嵌入式软件开发项目中&#xff0c;需要开…

OpenAI与核聚变公司寻求合作,白宫拨款1.8亿美元用于核聚变商业化研究

在当下&#xff0c;由 AI 引发的新一轮能源危机已经不再是一个小概率的「黑天鹅」事件&#xff0c;而是一头正在向我们猛冲而来的「灰犀牛」。 Helion Energy&#xff0c;是一家总部位于美国华盛顿州埃弗雷特的能源创业公司。 3.5研究测试&#xff1a;hujiaoai.cn 4研究测试&am…

Mysql的底层实现逻辑

Mysql5.x和Mysql8性能的差异 整体性能有所提高&#xff0c; 在非高并发场景下&#xff0c;他们2这使用区别不大&#xff0c;性能没有明显的区别。 只有高并发时&#xff0c;mysql8才体现他的优势。 2. Mysql数据存储结构Innodb逻辑结构 数据选用B树结构存储数据&#xff0…