Crocoddyl 使用教程(二)

系列文章目录

 


前言

f7ecb5fb5d094244aa05ed9a570f3325.png

        小车摆杆是另一个经典的控制实例。在这个系统中,一根欠驱动的杆子被固定在一辆一维驱动的小车顶部。游戏的目的是将杆子升到站立位置。

        模型如下: https://en.wikipedia.org/wiki/Inverted_pendulum

        我们用 eq?m_1 表示小车质量、eq?m_2 表示摆杆质量 (eq?m%3Dm_1+m_2)、eq?l 表示摆杆长度、eq?%5Ctheta 表示摆杆相对于垂直轴的角度、eq?p 表示小车位置、eq?g%3D9.81 表示重力。

        系统加速度可重写为

eq?%5Cddot%7B%5Ctheta%7D%3D%5Cdfrac1%7B%5Cmu%28%5Ctheta%29%7D%5Cbig%28%5Cdfrac%7B%5Ccos%5Ctheta%7Dlf+%5Cdfrac%7Bmg%7Dl%5Csin%28%5Ctheta%29-m_2%5Ccos%28%5Ctheta%29%5Csin%28%5Ctheta%29%5Cdot%7B%5Ctheta%7D%5E2%5Cbig%29%2C%5C%5C%5Cddot%7Bp%7D%3D%5Cdfrac1%7B%5Cmu%28%5Ctheta%29%7D%5Cbig%28f+m_2%5Ccos%28%5Ctheta%29%5Csin%28%5Ctheta%29g-m_2l%5Csin%28%5Ctheta%29%5Cdot%7B%5Ctheta%7D%5Cbig%29%2C

        其中,

eq?%5Cmu%28%5Ctheta%29%3Dm_1+m_2%5Csin%28%5Ctheta%29%5E2%2C

        其中,eq?f 代表输入指令(即 eq?f%3Du),eq?m%3Dm_1+m_2 代表总质量。


 

一、 微分动作模型

        微分动作模型(DAM)描述的是连续时间内的动作(控制/动力学)。在本练习中,我们要求您编写小车摆杆的运动方程。

        更多详情,请参阅 DifferentialActionModelCartpole 类中的说明。

import crocoddyl
import pinocchio
import numpy as np
from IPython.display import HTML
from cartpole_utils import animateCartpoleclass DifferentialActionModelCartpole(crocoddyl.DifferentialActionModelAbstract):def __init__(self):crocoddyl.DifferentialActionModelAbstract.__init__(self, crocoddyl.StateVector(4), 1, 6)  # nu = 1; nr = 6self.unone = np.zeros(self.nu)self.m1 = 1.0self.m2 = 0.1self.l = 0.5self.g = 9.81self.costWeights = [1.0,1.0,0.1,0.001,0.001,1.0,]  # sin, 1-cos, x, xdot, thdot, fdef calc(self, data, x, u=None):if u is None:u = model.unone# Getting the state and control variablesy, th, ydot, thdot = x[0].item(), x[1].item(), x[2].item(), x[3].item()f = u[0].item()# Shortname for system parametersm1, m2, l, g = self.m1, self.m2, self.l, self.gs, c = np.sin(th), np.cos(th)####################################################################################### TODO: Write the dynamics equation of your system ######################################################################################### Hint:# You don't need to implement integration rules for your dynamic system.# Remember that DAM implemented action models in continuous-time.m = m1 + m2mu = m1 + m2 * s**2xddot, thddot = cartpole_dynamics(self, data, x, u)  # Write the cartpole dynamics heredata.xout = np.matrix([xddot, thddot]).T# Computing the cost residual and valuedata.r = np.matrix(self.costWeights * np.array([s, 1 - c, y, ydot, thdot, f])).Tdata.cost = 0.5 * sum(np.asarray(data.r) ** 2).item()def calcDiff(model, data, x, u=None):# Advance user might implement the derivatives in cartpole_analytical_derivativescartpole_analytical_derivatives(model, data, x, u)

        取消下面一行的注释,就能得到小车摆杆动力学的解:

# %load solutions/cartpole_dyn.py

        您可能需要检查一下您的计算结果。以下是创建模型和运行计算方法的方法。

cartpoleDAM = DifferentialActionModelCartpole()
cartpoleData = cartpoleDAM.createData()
x = cartpoleDAM.state.rand()
u = np.zeros(1)
cartpoleDAM.calc(cartpoleData, x, u)

二、使用 DAMNumDiff 写导数

        在前面的练习中,我们没有定义 cartpole 系统的导数。在 crocoddyl 中,我们可以利用 DifferentialActionModelNumDiff 类来计算导数,而无需任何额外代码。该类通过数值微分计算导数。

        在下面的单元格中,您需要创建一个使用 NumDiff 计算导数的 cartpole DAM。

# Creating the carpole DAM using NumDiff for computing the derivatives.
# We specify the withGaussApprox=True to have approximation of the
# Hessian based on the Jacobian of the cost residuals.
cartpoleND = crocoddyl.DifferentialActionModelNumDiff(cartpoleDAM, True)

        使用 NumDiff 创建 cartpole DAM 后。我们希望您能回答以下问题:

  • Fx 的 2 列为空。是 Wich 列吗?为什么?
  • 能否仔细检查一下 Fu 的值?
# %load solutions/cartpole_fxfu.py

三、积分模型

        为 cartpole 系统创建 DAM 后。我们需要创建一个积分动模型(IAM)。请注意,IAM 将连续时间动作模型转换为离散时间动作模型。在本练习中,我们将使用简单欧拉积分器。

# %load solutions/cartpole_integration.py
###########################################################################
################## TODO: Create an IAM with from the DAM ##################
###########################################################################
# Hint:
# Use IntegratedActionModelEuler

四、编写问题,创建求解器

        首先,您需要描述射击问题。为此,您必须说明步的数量及其时间步长。在本练习中,我们希望使用 50 步和 5e-2。

        下面是我们创建问题的方法。

# Fill the number of knots (T) and the time step (dt)
x0 = np.array([0.0, 3.14, 0.0, 0.0])
T = 50
problem = crocoddyl.ShootingProblem(x0, [cartpoleIAM] * T, cartpoleIAM)

        问题不能解决,只能积分:

us = [np.zeros(cartpoleIAM.differential.nu)] * T
xs = problem.rollout(us)

        在 cartpole_utils 中,我们提供了 plotCartpole 和 animateCartpole 方法。让我们展示一下这个滚动条!

        请注意,to_jshtml 会生成视频控制命令。

HTML(animateCartpole(xs).to_jshtml())
# %load solutions/cartpole_ddp.py
# #########################################################################
# ################# TODO: Create the DDP solver and run it ###############
# ##########################################################################
HTML(animateCartpole(ddp.xs.tolist()).to_jshtml())

五、调整问题,解决问题

        指出解决问题的方法。

  • 没有终端模型,我们可以看到一些波动,但无法稳定下来。怎么办?
  • 最重要的是达到站立位置。我们还能使速度失效吗?
  • 增加所有权重是行不通的。如何慢慢增加惩罚?
# %load solutions/cartpole_tuning.py
# ##########################################################################
# ################# TODO: Tune the weights for each cost ###################
# ##########################################################################
terminalCartpole = DifferentialActionModelCartpole()
terminalCartpoleDAM = crocoddyl.DifferentialActionModelNumDiff(terminalCartpole, True)
terminalCartpoleIAM = crocoddyl.IntegratedActionModelEuler(terminalCartpoleDAM)terminalCartpole.costWeights[0] = 0  # fix me :)
terminalCartpole.costWeights[1] = 0  # fix me :)
terminalCartpole.costWeights[2] = 0  # fix me :)
terminalCartpole.costWeights[3] = 0  # fix me :)
terminalCartpole.costWeights[4] = 0  # fix me :)
terminalCartpole.costWeights[5] = 0  # fix me :)
problem = crocoddyl.ShootingProblem(x0, [cartpoleIAM] * T, terminalCartpoleIAM)
# Creating the DDP solver
ddp = crocoddyl.SolverDDP(problem)
ddp.setCallbacks([crocoddyl.CallbackVerbose()])# Solving this problem
done = ddp.solve([], [], 300)
print(done)
HTML(animateCartpole(ddp.xs.tolist()).to_jshtml())

六、使用分析导数

        取消下面一行的注释,就能得到分析导数的解:

# %load solutions/cartpole_analytical_derivatives.py
def cartpole_analytical_derivatives(model, data, x, u=None):pass

        在定义了分析导数后,我们就不需要使用 DAMNumDiff 对导数进行数值逼近了。

timeStep = 5e-2
cartpoleIAM = crocoddyl.IntegratedActionModelEuler(cartpoleDAM, timeStep)

        现在您可以再次运行 "IV. 编写问题,创建求解器 "中的所有模块,因为 cartpoleIAM 已被重新定义为直接使用解析导数。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/8611.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Agent Hospital: 一种可进化医疗代理人的医院模拟器

论文来源: https://arxiv.org/pdf/2405.02957 1 引言 大型语言模型(LLM)代理在各种任务中表现出了有前景的性能,包括代码生成、信息博弈和问答等。受 LLM 代理能力的启发,一些研究采用它们来模拟人类互动和行为,而不是处理单一任务,例如社交媒体上的信息传播和"Stanford…

Pyside6详细使用教程python之GUI开发

1、首先需要安装Pyside6,终端执行命令: pip3.10 install pyside6 2、你们的一般是 pip install pyside6 2、如下代码创建一个简易程序导入必要的模块 import sys from PySide6.QtWidgets import QApplication, QWidget, QVBoxLayout, QPushButton,…

c语言实现贪吃蛇小游戏————附全代码!!!

目录 1.Win32 API 1.1控制台应用程序 1.2控制台的名称,控制台窗口大小 1.3设置控制台光标位置 COORD - 光标坐标 GetStdHandle - 获取句柄 SetConsoleCursorPosition - 设置光标位置 封装一个设置光标的函数 1.4设置控制台光标的属性 CONSOLE_CURSOR_INFO …

HNU-人工智能-作业1

人工智能-作业1 计科210x 甘晴void 第1题 考虑一个实时的在线电话翻译系统,该系统实现英语与日语之间的实时在线翻译,讨论该系统的性能度量,环境,执行器,感知器,并对该环境的属性进行分析。(10…

【Android】源码解析Activity的结构分析

源码解析Activity的结构分析 目录 1、Activity、View、Window有什么关联?2、Activity的结构构建流程3 源码解析Activity的构成 3.1 Activity的Attach方法3.2 Activity的OnCreate 4、WindowManager与View的关系总结 1、一个Activity对应几个WindowManage&#xff0…

Java 中的 HTTP 客户端库OkHttp、Apache HttpClient和HttpUrlConnection

大家好,我是G探险者。 项目开发里面经常会有这么一种场景:与服务器进行 HTTP 通信。一般存在于服务间远程调用的场景 Java 生态系统提供了多种 HTTP 客户端库,每种都有其自己的特点、优势和适用场景。 本文将介绍几种主要的 Java HTTP 客户…

基于Springboot的校园招聘系统(有报告)。Javaee项目,springboot项目。

演示视频: 基于Springboot的校园招聘系统(有报告)。Javaee项目,springboot项目。 项目介绍: 采用M(model)V(view)C(controller)三层体系结构&…

modprobe: can‘t open ‘modules.dep‘: No such file or directory

使用modprobe会提示modprobe: cant open modules.dep: No such file or directory 直接输入depmod即可。 如果depmod没有效果,则需要重新配置编译你的根文件。 在busybox配置界面进入linux Module Utilities, 上下键选择depmod,并按 y 选中&#xff0c…

期权和期货有什么区别?

今天期权懂带你了解期权和期货有什么区别?期权和期货是两种常见的衍生金融工具,它们在结构和盈利方式上存在一些关键的区别: 期权 期权是一种给予持有者在未来某个时间以特定价格买入或卖出基础资产的权利,但不是义务。期权的主要…

LeetCode 110. 平衡二叉树

LeetCode 110. 平衡二叉树 1、题目 题目链接:110. 平衡二叉树 给定一个二叉树,判断它是否是 平衡二叉树 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:true示例 2: 输入:root [1,2…

Android 14 变更及适配攻略

准备工作 首先将我们项目中的 targetSdkVersion和compileSdkVersion 升至 34。 影响Android 14上所有应用 1.最低可安装的目标 API 级别 从 Android 14 开始,targetSdkVersion 低于 23 的应用无法安装。要求应用满足这些最低目标 API 级别要求有助于提高用户的安…

(二刷)代码随想录第1天|704. 二分查找 27. 移除元素

704. 二分查找 704. 二分查找 - 力扣(LeetCode) 代码随想录 (programmercarl.com) 手把手带你撕出正确的二分法 | 二分查找法 | 二分搜索法 | LeetCode:704. 二分查找_哔哩哔哩_bilibili 给定一个 n 个元素有序的(升序&#xff09…

国科大深度学习期末历年试卷

本文借鉴 国科大深度学习复习 深度学习期末 深度学习2020 一.名词解释(每个2分,共10分) 深度学习,稀疏自编码器,正则化,集成学习,Dropout 二.简答题(每题…

设置默认表空间和重命名

目录 设置默认表空间 创建的临时表空间 tspace4 修改为默认临时表空间 创建的永久性表空间 tspace3 修改为默认永久表空间 重命名表空间 将表空间 tspace3 修改为 tspace3_1 Oracle从入门到总裁:​​​​​​https://blog.csdn.net/weixin_67859959/article/details/13520…

万字长文详解Typora+PicGo+Github/Gitee的配置教程

文章目录 1.前言1.1 Typora简介1.2 引入1.2.1 移动本地图片位置导致图片加载失败问题解决方案反思: 1.2.2 CSDN导入图片转存失败1.2.3 思考 1.3 图床工具1.4 使用原因1.5 总结 2.安装教程2.1 Typora安装教程2.1.1 下载安装包方式1:百度网盘方式2&#xf…

FPGA ov5640视频以太网传输

1 实验任务 使用DFZU4EV MPSoC 开发板及双目OV5640摄像头其中一个摄像头实现图像采集,并通过开发板上的以太网接口发送给上位机实时显示。 2 Verilog代码 2.1 顶层模块 timescale 1ns / 1ps //以太网传输视频顶层模块module ov5640_udp_pc (input sys_cl…

[C++初阶]string的几道oj题

1.LCR 192. 把字符串转换成整数 (atoi) 这题难度不大,我这里采取遍历跳过空格的方式,我先展示出我的代码,然后慢慢讲解: class Solution { public:int myAtoi(string str) {if (str.empty()) return 0;int lengthstr.size();int i0;int symbol1;int sum0;while(i&l…

春游江淮 请来池州|一起看看石台这条“天路”有多美

自驾石台天路 石台天路位于安徽省石台县,西起杜村蓬莱仙洞,东起七都镇,全程约65公里,其中核心路段海拔均在650米以上,最高处海拔坐标位置901米,自驾其中,一路穿越山乡秘境,丛林、山脉、古村、古桥、流水、人家……扑面而来。 沿着蜿蜒的山路前行,一路上的风景如诗如画,青山如黛…

IT项目管理 选择/判断 【太原理工大学】

第一章、IT项目管理 判断题 1、搬家属于项目。( 对 ) 2、项目是为了创造一个唯一的产品或提供一个唯一的服务而进行的永久性的努力。( 错 ) 3、项目具有临时性的特征。( 对 ) 4、项目开发过程…

你的计算机配置似乎是正确的,但该设备或资源DNS没有响应

方法/步骤 方法一: 快捷键“winr”,输入services.msc,进入服务界面,找到dnsclient,确保是运行状态,如果没有运行,则选中该条目,右键选择运行。 电脑提示“您的计算机配置似乎是正确”&#xf…