自动驾驶相关知识学习笔记

一、概要

因为想知道SIL、HIL是什么仿真工具,故而浏览了自动驾驶相关的知识。

资料来源《自动驾驶——人工智能理论与实践》胡波 林青 陈强 著;出版时间:2023年3月

二、图像的分类、分割与检测任务区别

如图所示,这些更高阶的图像理解任务往往都可以归类为目标检测语义分割这两种基本的任务,或者基于这两种任务的扩展(实例分割)​。不同于单纯的图像分类,目标检测需要定位出在一张图像中每个物体(例如行人)的类别以及位置范围,而实例分割更进一步,需要以像素为单位给出每个物体的范围。

目标检测包括对车辆、行人、非机动车、交通信号灯和标志等进行检测。这个任务中需要同时做两件事情:一是分类,识别出目标是什么;二是定位出目标在哪里。前者不言而喻,对于后者,例如定位出目标在一个十字路口,需要能够分辨出是哪个位置的交通灯及交通灯分别是什么信号,这样才能相应地根据交通信号的指示移动。更细节地,目标检测可以分为2D和3D检测。前者是在一个2D图像上检测出物体,它的目标输出是在图像坐标系中的一个矩形框。后者是在3D空间中的检测,目标输出是3D的边界框。考虑到2D像素空间仍然只是3D空间的投影,而且如果考虑到畸变、地面的不平等因素,这种投影还存在不规则的因素,因此相对而言,2D像素空间中的检测与分割都还需要额外的处理才能用于后续的决策,而3D空间中的检测则可以较方便地用于决策规划环节。 

三、超参数

常见的超参数及其对模型训练的敏感性(其数值变化对模型训练的影响能力)

四、实现自动驾驶功能的流程

 五、自动驾驶系统研发流程

1、按信息处理过程划分

2、自动驾驶汽车研发工程示意图

(1)路采规划:该环节主要是对路采进行详细的路径规划,例如在全国哪些省市进行路采,采集什么样的路况和场景,有哪些代表性的天气状况需要采集,以及车队的人员配备和管理。

(2)测试车改装:该环节涉及测试车的功能规划,传感器的选择、安装、标定,数据获取系统(包括传感器记录仪、预标注系统、存储系统、车载电源等)的安装调试。

(3)裸数据采集:该环节需要注意相关法规的监管。在中国,公开道路上的地理信息数据的采集行为受《中华人民共和国测绘法》的约束,需要有地理信息勘测甲级资质的图商监管。

(4)数据上传:采集好的数据需要从路测场地通过物流的方式运输回数据中心上传,物流的过程同样也需要接受图商的监管。到达数据中心后,需要快速地将数据上传到数据中心的数据湖中存储,并将存储介质数据清除后通过物流送回路测场地循环使用。

(5)海量数据存储:根据不同的项目目标和规划,每天采集的数据量可能从数太字节(terabyte,TB)到数百太字节不等,由于数据量巨大,因此数据中心的数据上传应尽量采用自动化手段实现。数据中心侧应部署支持海量数据规模的数据湖存储设备接收每日上传的路采裸数据,同时应部署元数据库对路采裸数据的元数据进行管理(数据治理)​。

(6)数据清洗+预处理:一旦有新的裸数据进入数据湖,系统就可以开始数据处理的流程。先由图商对数据做脱敏(去除车牌等敏感信息)操作以及坐标系的偏转操作,再通过高性能计算集群对数据进行清洗(去除镜头被遮挡等的图像数据)和相应的预处理(亮度调节、对比度调节等)​。

(7)数据标注:对于需要进行深度学习(deep learning,DL)训练的数据,通过手动或半自动的标注平台进行标注(labeling),以生成监督学习需要的真值数据。

(8)自动驾驶产品规划:由自动驾驶的产品经理对自动驾驶的功能进行产品规划,并针对不同功能的自适应巡航控制(adaptive cruise control,ACC)系统、自动紧急制动(autonomous emergency braking,AEB)系统、车道偏离警示(lanedeparture warning,LDW)系统等制定不同的测试方案。

(9)算法模型训练:利用传感器数据进行物体识别、语义分割、实例分割等基于卷积神经网络的深度学习训练,将达到训练精度的模型用于推理,从传感器数据中抽取出各种场景要素。

(10)仿真场景库:使用抽取出来的场景要素生成场景库,业界比较权威的场景库是基于自动化及测量系统标准协会(association for standardization ofautomation and measuring systems,ASAM)规定的OpenDrive和OpenScenario场景库。在后期的虚拟仿真中,此环节生成的场景库将用于为数字仿真模型车生成虚拟的仿真场景。

(11)虚拟仿真:通过Simulink、Prescan、Carsim等虚拟仿真工具对算法进行“软件在环(SiL)”虚拟仿真,在仿真环节中仿真道路路面、交通参照物、车辆、行人以及天气条件下的环境信息(例如雨雾或者夜间照明时的路面信息)​。通过对各种基本要素的排列组合形成各种复杂的场景,尽可能多地覆盖各种罕见场景(cornercase),让数字仿真模型车在这些复杂场景中做各种测试并记录结果。每次测试完   成后利用测试结果对数字仿真模型车的算法和参数进行优化,循环往复,直到得到满足自动驾驶分级功能要求的结果。

(12)硬件仿真:对SiL仿真过程中达到功能标准的算法进行“硬件在环(HiL)”仿真验证。在SiL仿真过程的代码跑通后,再基于必要的硬件在环平台,检测代码在传感器、计算单元等硬件系统上运行中的错误和兼容性问题。然后进行“车辆在环(ViL)”仿真,将相关的软硬件系统集成到车辆平台上,在封闭场地中完成相关测试,检测代码是否出现问题。

(13)道路测试:基于“司机在环(DiL)”​,在测试场地和政府允许的公开道路进行场地测试,检测自动驾驶系统的运行情况,获得司机的主观评价及验证人机交互等功能。

(14)量产:以上各项测试都通过后,就可以进入量产阶段,在汽车成品中进行大量部署。

六、自动驾驶系统的仿真测试

1、软件在环(SiL)仿真测试系统架构

2、硬件在环(HiL)仿真测试系统架构

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/65344.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

springcloud 介绍

Spring Cloud是一个基于Spring Boot的微服务架构解决方案集合,它提供了一套完整的工具集,用于快速构建分布式系统。在Spring Cloud的架构中,服务被拆分为一系列小型、自治的微服务,每个服务运行在其独立的进程中,并通过…

【PLL】非线性瞬态性能

频率捕获、跟踪响应,是大信号非线性行为锁相范围内的相位、频率跟踪,不是非线性行为 所以:跟踪,是线性区域;捕获,是大信号、非线性区域 锁定范围:没有周跳(cycle-slipping&#xff0…

QML学习(七) 学习QML时,用好Qt设计器,快速了解各个组件的属性

在初步学习QML时,特别建议看看Qt设计器,先利用Qt Quick设计师的使用,快速的对Qt Quick的各个组件及其常用的属性,有个初步的了解和认识。如果初始学习一上来直接以代码形式开干,很容易一头雾水。而设计器以最直白的所见…

find 查找文件grep匹配数据

一、find介绍 1. find . -iname "*.txt"查找当前目录下各个文件夹下的txt属性的文件(i忽略大小写)。 2.find . -type f 查找当前目录下各个文件夹下的文件 3.find . -type d 查找当前目录下各个文件夹下的目录 4.find . -type f | xargs grep -ain -E "匹配…

Mac上鸿蒙配置HDC报错:zsh: command not found: hdc -v

这个问题困扰了好久,按照官方文档去配置的,就是会一直报错,没有配置成功,主要原因是官网ide的路径可能和你本地的ide的路径不一致,因为官网的ide版本可能是最新的 一.先查找你本地的toolchains目录在哪里,…

CS·GO搬砖流程详细版

说简单点,就是Steam买了然后BUFF上卖,或许大家都知道这点,但就是一些操作和细节问题没那么明白。我相信,你看完这篇文章以后,至少会有新的认知。 好吧,废话少说,直接上实操! 首先准…

“深入浅出”系列之FFmpeg:(1)音视频开发基础

我的音视频开发大部分内容是跟着雷霄骅大佬学习的,所以笔记也是跟雷老师的博客写的。 一、音视频相关的基础知识 首先播放一个视频文件的流程如下所示: FFmpeg的作用就是将H.264格式的数据转换成YUV格式的数据,然后SDL将YUV显示到电脑屏幕上…

【Linux】Linux开发:GDB调试器与Git版本控制工具指南

Linux相关知识点可以通过点击以下链接进行学习一起加油!初识指令指令进阶权限管理yum包管理与vim编辑器GCC/G编译器make与Makefile自动化构建 在 Linux 开发中,GDB 调试器和 Git 版本控制工具是开发者必备的利器。GDB 帮助快速定位代码问题,G…

【设计模式-2】23 种设计模式的分类和功能

在软件工程领域,设计模式是解决常见设计问题的经典方案。1994 年,Erich Gamma、Richard Helm、Ralph Johnson 和 John Vlissides(四人帮,GoF)在《设计模式:可复用面向对象软件的基础》一书中系统性地总结了…

谷粒商城-高级篇完结-Sleuth+Zipkin 服务链路追踪

1、基本概念和整合 1.1、为什么用 微服务架构是一个分布式架构,它按业务划分服务单元,一个分布式系统往往有很多个服务单元。由于服务单元数量众多,业务的复杂性,如果出现了错误和异常,很难去定位 。主要体现在&#…

基于Python的音乐播放器 毕业设计-附源码73733

摘 要 本项目基于Python开发了一款简单而功能强大的音乐播放器。通过该音乐播放器,用户可以轻松管理自己的音乐库,播放喜爱的音乐,并享受音乐带来的愉悦体验。 首先,我们使用Python语言结合相关库开发了这款音乐播放器。利用Tkin…

实际开发中,常见pdf|word|excel等文件的预览和下载

实际开发中,常见pdf|word|excel等文件的预览和下载 背景相关类型数据之间的转换1、File转Blob2、File转ArrayBuffer3、Blob转ArrayBuffer4、Blob转File5、ArrayBuffer转Blob6、ArrayBuffer转File 根据Blob/File类型生成可预览的Base64地址基于Blob类型的各种文件的下载各种类型…

微信小程序中的 storage(本地存储)和内存是两个完全不同的存储区域

这是一个非常关键且容易混淆的概念 既然 this.globalData.appId appId 是将 appId 存储在内存中,为什么微信小程序中的 wx.getStorage 和 wx.setStorage(本地存储)中没有 appId,并且您提出了一个非常重要的疑问:stor…

【C++数据结构——查找】二叉排序树(头歌实践教学平台习题)【合集】

目录😋 任务描述 相关知识 1. 二叉排序树的基本概念 2. 二叉排序树节点结构体定义 3. 创建二叉排序树 4. 判断是否为二叉排序树 5. 递归查找关键字为 6 的结点并输出查找路径 6. 删除二叉排序树中的节点 测试说明 通关代码 测试结果 任务描述 本关任务&a…

Linux(17)——使用 DNF 安装和更新软件包

目录 一、使用 DNF 管理软件包: 1、 DNF 查找软件: 2、DNF 安装软件: 3、DNF 删除软件: 二、使用 DNF 管理软件包组: 1、DNF 显示组信息: 2、DNF 安装组: 三、使用 DNF 查看事务历史记录…

基于32单片机的智能语音家居

一、主要功能介绍 以STM32F103C8T6单片机为控制核心,设计一款智能远程家电控制系统,该系统能实现如下功能: 1、可通过语音命令控制照明灯、空调、加热器、窗户及窗帘的开关; 2、可通过手机显示和控制照明灯、空调、窗户及窗帘的开…

Qt 5.14.2 学习记录 —— 일 新项目

文章目录 1、创建2、查看代码 ---- main.cpp3、查看代码 ---- widgt.h4、查看代码 ---- widgt.cpp和widget.ui5、查看代码 ---- Empty.pro6、运行产生的中间文件 1、创建 左上角的文件,新建文件或项目。如果要写一个GUI程序,应当选择Application&#x…

Transformer从零详细解读——DASOU讲AI

1. 从全局角度概括Transformer transformer的任务是什么? 进一步细化 进一步细化,注意:每个encoder结构相同,参数不同;decoder同理 原论文中的图如下: 2.Encoder 2.1 输入部分 (1&#xff09…

ARM发布Armv9.5架构:迈向更强性能与灵活性的新时代

2024年11月30日,ARM正式发布了其最新的Armv9.5架构,这是Arm技术发展的又一重要里程碑。从表中信息来看,Armv9.5架构的发布标志着该公司的架构系列在性能、灵活性和可扩展性方面取得了进一步突破。本次发布不仅是技术上的提升,更是…

分布式系统架构6:链路追踪

这是小卷对分布式系统架构学习的第6篇文章,关于链路追踪,之前写过traceId的相关内容:https://juejin.cn/post/7135611432808218661,不过之前写的太浅了,且不成系统,只是简单的理解,今天来捋一下…