【学习笔记】深入浅出详解Pytorch中的View, reshape, unfold,flatten等方法。

文章目录

  • 一、写在前面
  • 二、Reshape
    • (一)用法
    • (二)代码展示
  • 三、Unfold
    • (一)torch.unfold 的基本概念
    • (二)torch.unfold 的工作原理
    • (三) 示例代码
    • (四)torch.unfold 的应用场景
    • (五)注意事项
    • (六)总结
  • 四、View
    • (一)用法
    • (二)注意事项
    • (三)其他方法
  • 五、Flatten
    • (一)torch.flatten 的基本概念
    • (二)torch.flatten 的工作原理
    • (三)示例代码
  • 六、Permute
    • (一)torch.permute 的基本概念
    • (二)torch.permute 的工作原理
    • (三) 示例代码
    • (四) torch.permute 的应用场景
  • 七、总结

一、写在前面

最近在解析transformer源码的时候突然看到了unfold?我在想unfold是什么意思?为什么不用reshape,他们的底层逻辑有什么区别呢?于是便相对比一下他们之间的区别,便有了本篇博客,希望对大家有帮助!

二、Reshape

(一)用法

1. torch.reshape(input, shape)
输入是tensor和shape,其中原始shape和目标shape的元素数量要一致。

2. Tensor.reshape(shape) → Tensor
与上述用法一致,只不过这个是直接在tensor的基础上进行reshape。

reshpe是按照顺序进行重新排列组合的。
[16,2] 其实与 [4,2,2,2] 是一样的,只要最后一维的数字是一样,其实结果都是一样的。

(二)代码展示

三、Unfold

(一)torch.unfold 的基本概念

torch.unfold 的作用是将输入张量的某个维度展开为多个滑动窗口。每个窗口包含一个局部区域,这些区域可以用于后续的计算。

  1. 语法:
torch.Tensor.unfold(dimension, size, step)
  1. 参数:
    • dimension:要展开的维度(整数)。
    • size:滑动窗口的大小(整数)。
    • step:滑动窗口的步长(整数)。
    • 返回值:返回一个新的张量,其中指定维度的每个元素被展开为多个滑动窗口。

(二)torch.unfold 的工作原理

假设我们有一个形状为 (N, C, H, W) 的张量(例如图像数据),我们希望在高度维度(H)上提取滑动窗口。

  • 输入张量:(N, C, H, W)
  • 展开维度:dimension=2(即高度维度 H)
  • 窗口大小:size=k(例如 k=3)
  • 步长:step=s(例如 s=1)

torch.unfold 会将高度维度 H 展开为多个大小为 k 的滑动窗口,每个窗口之间间隔 s。

(三) 示例代码

  • 示例 1:一维张量的展开
import torch
# 创建一个一维张量
x = torch.arange(10)
print("原始张量:", x)# 使用 unfold 展开
unfolded = x.unfold(dimension=0, size=3, step=1)
print("展开后的张量:\n", unfolded)
  • 输出:
原始张量: tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
展开后的张量:tensor([[0, 1, 2],[1, 2, 3],[2, 3, 4],[3, 4, 5],[4, 5, 6],[5, 6, 7],[6, 7, 8],[7, 8, 9]])
  • 示例 2:二维张量的展开(图像处理)
import torch
# 创建一个二维张量(模拟图像)x = torch.arange(16).reshape(1, 1, 4, 4)  # 形状为 (1, 1, 4, 4)print("原始张量:\n", x)# 使用 unfold 展开unfolded_1 = x.unfold(dimension=2, size=3, step=1)unfolded_2 = unfolded_1.unfold(dimension=3, size=3, step=1)print("展开后的张量形状:", unfolded_1.shape)print("展开后的张量:\n", unfolded_1)print("展开后的张量形状:", unfolded_2.shape)print("展开后的张量:\n", unfolded_2)
  • 输出:
原始张量:tensor([[[[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11],[12, 13, 14, 15]]]])
展开后的张量形状: torch.Size([1, 1, 2, 4, 3])
展开后的张量:tensor([[[[[ 0,  4,  8],[ 1,  5,  9],[ 2,  6, 10],[ 3,  7, 11]],[[ 4,  8, 12],[ 5,  9, 13],[ 6, 10, 14],[ 7, 11, 15]]]]])
展开后的张量形状: torch.Size([1, 1, 2, 2, 3, 3])
展开后的张量:tensor([[[[[[ 0,  1,  2],[ 4,  5,  6],[ 8,  9, 10]],[[ 1,  2,  3],[ 5,  6,  7],[ 9, 10, 11]]],[[[ 4,  5,  6],[ 8,  9, 10],[12, 13, 14]],[[ 5,  6,  7],[ 9, 10, 11],[13, 14, 15]]]]]])

数组的运算主要看最后两维,倒数第二维代表行,倒数第一维代表列。

(四)torch.unfold 的应用场景

  1. 卷积操作

在卷积神经网络(CNN)中,卷积核通过滑动窗口的方式提取图像的局部特征。torch.unfold 可以用于手动实现卷积操作。

  1. 图像处理

在图像处理中,torch.unfold 可以用于提取图像的局部区域(例如提取图像的滑动窗口)。

  1. 时间序列分析

在时间序列分析中,torch.unfold 可以用于提取时间序列的滑动窗口,用于特征提取或模型训练。

(五)注意事项

  1. 维度选择:需要明确指定要展开的维度(dimension)。
  2. 窗口大小和步长:窗口大小(size)和步长(step)的选择会影响展开后的张量形状。
  3. 内存消耗:torch.unfold 可能会生成较大的张量,尤其是在高维数据上使用时,需要注意内存消耗。

(六)总结

  1. torch.unfold 的作用:从张量的某个维度提取滑动窗口。
  2. 常用参数:dimension(展开维度)、size(窗口大小)、step(步长)。
  3. 应用场景:卷积操作、图像处理、时间序列分析等。
  4. 注意事项:选择合适的维度、窗口大小和步长,避免内存消耗过大。

四、View

torch.view 用于返回一个与原始张量共享相同数据存储的新张量,但具有不同的形状。换句话说,view 只是改变了张量的视图(view),而不会复制数据。

(一)用法

  1. Tensor.view(*shape):
    • 参数:

    *shape:新的形状(可以是整数或元组)。

    • 返回值:

    返回一个新的张量,具有指定的形状,并与原始张量共享相同的数据存储。

(二)注意事项

  1. view 返回的张量与原始张量共享相同的数据存储。
  2. 如果原始张量的数据发生变化,view 返回的张量也会随之变化。
  3. view 要求张量的内存必须是连续的(即张量在内存中是连续存储的)。如果内存不连续,view 会抛出错误。

(三)其他方法

  1. view_as
  • 作用:将当前张量转换为与另一个张量相同的形状。
  • 语法:
torch.Tensor.view_as(other)
  • 参数:

other:目标张量,当前张量的形状将被转换为与 other 相同的形状。

  • 返回值:

返回一个新的张量,具有与 other 相同的形状,并与原始张量共享数据存储。

  • 示例:
import torch
# 创建一个张量
x = torch.arange(12)
print("原始张量:", x)
# 创建目标张量
other = torch.empty(3, 4)
# 使用 view_as 改变形状
y = x.view_as(other)
print("改变形状后的张量:\n", y)
  • 输出:
原始张量: tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
改变形状后的张量:tensor([[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]])
  1. view_as_real
  • 作用:将复数张量转换为实数张量。
  • 语法:
torch.Tensor.view_as_real()
  • 返回值:

返回一个新的实数张量,形状为 (…, 2),其中最后一个维度包含复数的实部和虚部。

  • 示例:
import torch
# 创建一个复数张量
x = torch.tensor([1 + 2j, 3 + 4j])
print("原始张量:", x)
# 使用 view_as_real 转换为实数张量
y = x.view_as_real()
print("转换后的张量:\n", y)
  • 输出:
原始张量: tensor([1.+2.j, 3.+4.j])
转换后的张量:tensor([[1., 2.],[3., 4.]])
  1. view_as_complex
  • 作用:将实数张量转换为复数张量。
  • 语法:
torch.Tensor.view_as_complex()
  • 返回值:

返回一个新的复数张量,形状为 (…,),其中最后一个维度被解释为复数的实部和虚部。

  • 示例:
import torch
# 创建一个实数张量
x = torch.tensor([[1., 2.], [3., 4.]])
print("原始张量:\n", x)
# 使用 view_as_complex 转换为复数张量
y = x.view_as_complex()
print("转换后的张量:", y)
  • 输出:
原始张量:tensor([[1., 2.],[3., 4.]])
转换后的张量: tensor([1.+2.j, 3.+4.j])
  1. view_as_strided
  • 作用:返回一个具有指定步长和内存布局的张量视图。
  • 语法:
torch.Tensor.view_as_strided(size, stride)
  • 参数:

size:新的形状(元组)。
stride:新的步长(元组)。

  • 返回值:

返回一个新的张量,具有指定的形状和步长,并与原始张量共享数据存储。

  • 示例:
import torch
# 创建一个张量
x = torch.arange(9).view(3, 3)
print("原始张量:\n", x)
# 使用 view_as_strided 改变形状和步长
y = x.view_as_strided((2, 2), (1, 2))
print("改变形状和步长后的张量:\n", y)
  • 输出:
原始张量:tensor([[0, 1, 2],[3, 4, 5],[6, 7, 8]])
改变形状和步长后的张量:tensor([[0, 2],[1, 3]])
  1. view_as_real 和 view_as_complex 的应用场景
  • 复数计算:

在涉及复数计算的任务中,view_as_real 和 view_as_complex 可以用于在复数和实数之间进行转换。

  • 信号处理:

在信号处理中,复数张量常用于表示频域信号,view_as_real 和 view_as_complex 可以用于频域和时域之间的转换。

  1. view_as_strided 的应用场景
  • 自定义内存布局:

在需要自定义内存布局的场景中,view_as_strided 可以用于创建具有特定步长和形状的张量视图。

  • 高效内存访问:

在需要高效访问内存的场景中,view_as_strided 可以用于优化内存访问模式。

五、Flatten

(一)torch.flatten 的基本概念

torch.flatten 的作用是将输入张量的指定维度展平为一维。它可以展平整个张量,也可以只展平部分维度。

  1. 语法:
torch.flatten(input, start_dim=0, end_dim=-1)
  1. 参数:

    • input:输入张量。
    • start_dim:开始展平的维度(整数),默认为 0。
    • end_dim:结束展平的维度(整数),默认为 -1。
    • 返回值:返回一个新的张量,具有展平后的形状。

(二)torch.flatten 的工作原理

  1. torch.flatten 会将指定范围内的维度展平为一维。
  2. 如果 start_dim=0 且 end_dim=-1,则整个张量会被展平为一维。
  3. 如果只展平部分维度,则其他维度保持不变。

(三)示例代码

  • 示例 1:展平整个张量
import torch
# 创建一个二维张量
x = torch.arange(12).view(3, 4)
print("原始张量:\n", x)
# 使用 flatten 展平整个张量
y = torch.flatten(x)
print("展平后的张量:", y)
  • 输出:
原始张量:tensor([[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]])
展平后的张量: tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
  • 示例 2:展平部分维度
import torch
# 创建一个三维张量
x = torch.arange(24).view(2, 3, 4)
print("原始张量:\n", x)
# 使用 flatten 展平第二个维度到第三个维度
y = torch.flatten(x, start_dim=1, end_dim=2)
print("展平后的张量:\n", y)
  • 输出:
原始张量:tensor([[[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]],[[12, 13, 14, 15],[16, 17, 18, 19],[20, 21, 22, 23]]])
展平后的张量:tensor([[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11],[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]])
  • 示例 3:展平特定维度
import torch
# 创建一个四维张量
x = torch.arange(24).view(2, 2, 3, 2)
print("原始张量:\n", x)
# 使用 flatten 展平第三个维度
y = torch.flatten(x, start_dim=2, end_dim=2)
print("展平后的张量:\n", y)
  • 输出:
原始张量:tensor([[[[ 0,  1],[ 2,  3],[ 4,  5]],[[ 6,  7],[ 8,  9],[10, 11]]],[[[12, 13],[14, 15],[16, 17]],[[18, 19],[20, 21],[22, 23]]]])
展平后的张量:tensor([[[ 0,  1,  2,  3,  4,  5],[ 6,  7,  8,  9, 10, 11]],[[12, 13, 14, 15, 16, 17],[18, 19, 20, 21, 22, 23]]])

六、Permute

(一)torch.permute 的基本概念

torch.permute 的作用是将输入张量的维度按照指定的顺序重新排列。它类似于 NumPy 中的 transpose,但更加灵活,可以同时对多个维度进行排列。

  1. 语法:
torch.Tensor.permute(*dims)
  1. 参数:
    • *dims:新的维度顺序(元组或多个整数)。
    • 返回值:返回一个新的张量,具有重新排列后的维度顺序,并与原始张量共享数据存储。

(二)torch.permute 的工作原理

torch.permute 会将输入张量的维度按照指定的顺序重新排列。
新的维度顺序必须与原始张量的维度数量相同,并且每个维度索引只能出现一次。

(三) 示例代码

  1. 示例 1:二维张量的转置
import torch
# 创建一个二维张量
x = torch.arange(12).view(3, 4)
print("原始张量:\n", x)# 使用 permute 转置
y = x.permute(1, 0)  # 将维度 0 和 1 交换
print("转置后的张量:\n", y)
  • 输出:
原始张量:tensor([[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]])
转置后的张量:tensor([[ 0,  4,  8],[ 1,  5,  9],[ 2,  6, 10],[ 3,  7, 11]])
  1. 示例 2:三维张量的维度重排
import torch
# 创建一个三维张量
x = torch.arange(24).view(2, 3, 4)
print("原始张量:\n", x)# 使用 permute 重排维度
y = x.permute(2, 0, 1)  # 将维度 0, 1, 2 重排为 2, 0, 1
print("重排后的张量形状:", y.shape)
print("重排后的张量:\n", y)
  • 输出:
原始张量:tensor([[[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]],[[12, 13, 14, 15],[16, 17, 18, 19],[20, 21, 22, 23]]])
重排后的张量形状: torch.Size([4, 2, 3])
重排后的张量:tensor([[[ 0,  4,  8],[12, 16, 20]],[[ 1,  5,  9],[13, 17, 21]],[[ 2,  6, 10],[14, 18, 22]],[[ 3,  7, 11],[15, 19, 23]]])
  1. 示例 3:四维张量的维度重排
import torch
# 创建一个四维张量
x = torch.arange(24).view(2, 2, 3, 2)
print("原始张量:\n", x)# 使用 permute 重排维度
y = x.permute(3, 1, 2, 0)  # 将维度 0, 1, 2, 3 重排为 3, 1, 2, 0
print("重排后的张量形状:", y.shape)
print("重排后的张量:\n", y)
  • 输出:
原始张量:tensor([[[[ 0,  1],[ 2,  3],[ 4,  5]],[[ 6,  7],[ 8,  9],[10, 11]]],[[[12, 13],[14, 15],[16, 17]],[[18, 19],[20, 21],[22, 23]]]])
重排后的张量形状: torch.Size([2, 2, 3, 2])
重排后的张量:tensor([[[[ 0, 12],[ 2, 14],[ 4, 16]],[[ 6, 18],[ 8, 20],[10, 22]]],[[[ 1, 13],[ 3, 15],[ 5, 17]],[[ 7, 19],[ 9, 21],[11, 23]]]])

(四) torch.permute 的应用场景

  1. 图像处理

在图像处理中,torch.permute 可以用于调整图像的通道顺序。例如,将 (C, H, W) 的图像张量转换为 (H, W, C)。

  1. 深度学习模型输入

在深度学习中,模型的输入张量通常需要特定的维度顺序。torch.permute 可以用于调整输入张量的维度顺序。

  1. 数据预处理

在数据预处理中,torch.permute 可以用于调整数据的维度顺序,以便进行后续的计算或操作。

如果每一维度都有特定的含义,此时想改变维度的时候用permute。

七、总结

  1. reshape 与 view 几乎一致, 甚至可以说reshape可以代替view;
  2. reshape 与 permute 的区别在于,reshape是按照顺序重新进行排列组合,permute是按照维度进行重新排列组合,如果各个维度都有特定的意义,那么permute会更合适。
  3. unfold是按照某一维度滑动选取数据,新增加一维,新增加的维度的大小为滑动窗口的大小,原始维度会根据滑动窗口和step的大小而变化。
  4. flatten也是按照顺序进行展开,且展开的是某个范围的维度,不是特定的维度。
  5. 不管是几维数组,主要看最后两维,倒数第二维代表行,倒数第一维代表列。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/63571.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入理解 MySQL 索引

引言 在数据库管理中,索引(Index)是提高查询性能的关键技术之一。MySQL 是最流行的关系型数据库管理系统之一,广泛应用于各种规模的应用程序中。本文将深入探讨 MySQL 中的索引概念、类型、工作原理以及最佳实践,帮助…

利用notepad++删除特定关键字所在的行

1、按组合键Ctrl H,查找模式选择 ‘正则表达式’,不选 ‘.匹配新行’ 2、查找目标输入 : ^.*关键字.*\r\n (不保留空行) ^.*关键字.*$ (保留空行)3、替换为:(空) 配置界面参考下图: ​​…

docker安装和换源

安装: https://www.runoob.com/docker/ubuntu-docker-install.html sudo apt-get remove docker docker-engine docker.io containerd runcsudo apt-get install \apt-transport-https \ca-certificates \curl \gnupg-agent \software-properties-commoncurl -fsS…

CSSmodule的作用是什么

CSS Modules的作用主要体现在以下几个方面: 1. 解决全局样式污染问题 在传统的CSS管理方式中,样式定义通常是全局的,这很容易导致全局样式污染。当多个组件或页面共享同一个样式时,可能会出现样式冲突和覆盖的情况,从…

创建第一个QML项目

文章目录 使用 Qt Creator 创建 Qt Quick 项目详解为什么选择 Qt Creator?1. 打开 Qt Creator2. 选择项目模板3. 设置项目名称与路径4. 定义项目细节5. 配置构建套件6. 检查项目配置7. 编译并运行项目后续操作修改界面添加功能 总结 使用 Qt Creator 创建 Qt Quick …

【k8s集群应用】K8S二进制安装大致步骤(简略版)

文章目录 K8S二进制安装部署etcd测试etcd集群(可选)恢复etcd数据库 部署master组件部署node组件K8S kubeadm安装关键命令更新kubeadm安装的K8S证书有效期方法一方法二查看证书有效期 K8S二进制安装 部署etcd 使用cfssl工具签发证书和私钥下载解压etcd软…

瑞吉外卖项目学习笔记(二)Swagger、logback、表单校验和参数打印功能的实现

瑞吉外卖项目学习笔记(一)准备工作、员工登录功能实现 文章目录 3 项目组件优化3.1 实现Swagger文档输出3.2 实现logback日志打印3.3 实现表单校验功能3.4 实现请求参数和响应参数的打印 3 项目组件优化 3.1 实现Swagger文档输出 1)在application.yml中增加knife4…

leetcode刷题-回溯算法04

代码随想录回溯算法part01| 491.递增子序列、46.全排列、47.全排列II 491.递增子序列46.全排列47.全排列II 491.递增子序列 leetcode题目链接 代码随想录文档讲解 思路: 与上一题不同,不能用used列表,因为这个题不能排序, 在每一…

基于字节大模型的论文翻译(含免费源码)

基于字节大模型的论文翻译 源代码: 👏 star ✨ https://github.com/boots-coder/LLM-application 展示 项目简介 本项目是一个基于大语言模型(Large Language Model, LLM)的论文阅读与翻译辅助工具。它通过用户界面&#xff08…

mysql的事务控制和数据库的备份和恢复

事务控制语句 行锁和死锁 行锁 两个客户端同时对同一索引行进行操作 客户端1正常运行 客户端2想修改,被锁行 除非将事务提交才能继续运行 死锁 客户端1删除第5行 客户端2设置第1行为排他锁 客户端1删除行1被锁 客户端2更新行5被锁 如何避免死锁 mysql的备份和还…

Tengine:Nginx二次开发-高性能进化

前言:在当今的互联网时代,Web 服务器的性能和稳定性对于网站的成功至关重要。Nginx 以其高性能和可扩展性而闻名,但有时候,我们需要更多的特性来满足特定的业务需求。Tengine,作为一个由淘宝网发起的 Nginx 二次开发版…

RK3588, FFmpeg 拉流 RTSP, mpp 硬解码转RGB

RK3588 ,基于FFmpeg, 拉取RTSP,使用 mpp 实现硬解码. ⚡️ 传送 ➡️ Ubuntu x64 架构, 交叉编译aarch64 FFmpeg mppRK3588, FFmpeg 拉流 RTSP, mpp 硬解码转RGBRk3588 FFmpeg 拉流 RTSP, 硬解码转RGBRK3588 , mpp硬编码yuv, 保存MP4视频文件.

Windows 下 Anaconda的安装与配置 GPU 版

给之前的电脑安一下深度学习环境 判断是否有NVIDIA GPU Ctrl Shift Esc 打开任务管理器 带此字眼表示有 NVIDIA GPU 安装Anaconda anaconda 打开邮箱会看到下载链接 这里建议修改为其他盘,要不然下载的包和创建的环境都在C盘,占用空间 三个都打钩 取…

【openssl】 version `OPENSSL_3.0.3‘ not found 问题

【openssl】 version OPENSSL_3.0.3 not found 问题 使用openssl时候报错: openssl lib/libcrypto.so.3: version OPENSSL_3.0.3 not found查阅CSDN发现有博主说把别的地方的libcrypto.so.3 复制过去就好了。 尝试无效 警告!这个操作不对: 不…

flask flask-socketio创建一个网页聊天应用

应用所需环境: python 3.11.11 其他 只需要通过这个命令即可 pip install flask3.1.0 Flask-SocketIO5.4.1 -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple 最好是用conda创建一个新的虚拟环境来验证 完整的pip list如下 Package Version ----…

联邦学习防止数据泄露

文章目录 联邦学习防止数据泄露的原理联邦学习的优势联邦学习与集中式学习的成本分析联邦学习的实际应用案例个人设想参考文献 联邦学习 (Federated Learning) 是一种分布式机器学习技术,旨在解决数据隐私保护问题。它允许在分散的数据源上进行模型训练,…

STM32 水质水位检测项目(硬件架构)及(软件架构)

硬件选型 水位测量模块 TDS采集模块 外置ADC模块(ADS1115) 水位测量模块使用方法 水位测量原理 压力传感器:水越深压力越大 P ρgh Fps Fρgh*s P大气压 水位测量传感器本质上是一个压力测量传感器。压力的值和传感器产生的电压值是线…

C# 6.0 连接elasticsearch数据库

在 C# 6.0 中连接 Elasticsearch 数据库,您可以使用官方的 Elasticsearch 客户端库 NEST。NEST 是一个高性能的 .NET 客户端,用于与 Elasticsearch 进行交互。以下是一个详细的步骤指南,帮助您在 C# 6.0 项目中连接和操作 Elasticsearch。 1. 安装 NEST 包 首先,您需要在您…

服务器数据恢复—RAIDZ离线硬盘数超过热备盘数导致阵列崩溃的数据恢复案例

服务器存储数据恢复环境: ZFS Storage 7320存储阵列中有32块硬盘。32块硬盘分为4组,每组8块硬盘,共组建了3组RAIDZ,每组raid都配置了热备盘。 服务器存储故障: 服务器存储运行过程中突然崩溃,排除人为误操…

Java转C++之编程范式

1. 过程式编程(Procedural Programming) 在 C 中的表现 过程式编程是通过一系列的函数调用来实现程序的功能。函数是核心构建单元,数据和操作通过函数进行交互。 C 中:可以使用普通的函数和全局变量来进行过程式编程。Java 中&…