基于字节大模型的论文翻译(含免费源码)

基于字节大模型的论文翻译

源代码:
👏 star ✨
https://github.com/boots-coder/LLM-application

展示

在这里插入图片描述
在这里插入图片描述

项目简介

本项目是一个基于大语言模型(Large Language Model, LLM)的论文阅读与翻译辅助工具。它通过用户界面(GUI)和后端处理逻辑,提供以下功能:

  1. 模式选择

    • PDF模式:用户可选择一个 PDF 文件,程序自动解析论文文本及表格,对论文内容进行摘要、关键词提取及翻译。
    • 文本模式:用户可直接输入英文文本进行摘要与关键词提取,然后翻译成中文。
  2. 处理过程提示: 当用户发起处理请求(翻译文本或解析并翻译 PDF 文件内容)时,界面会显示“处理中”提示,避免用户等待过程中误认为程序无响应。

  3. 结果展示: 处理完成后,不仅将结果保存到本地(JSON和文本文件),还会在新弹出的窗口中显示全文翻译、核心技术总结和关键词,方便用户快速浏览和复制。

功能概述

  • PDF解析:使用 PyMuPDF 对 PDF 进行文本提取,并可选使用表格解析(通过 pdfplumber)。
  • 大语言模型交互:调用火山引擎智能语言服务(ARK runtime),根据文本内容进行摘要、关键词提取和机器翻译。
  • GUI界面:使用 tkinter 构建简单易用的图形界面,用户可通过选择文件或输入文本,点击按钮一键执行。

技术选型

  • Python版本:建议使用 Python 3.9+

  • 后端组件

    • PDF解析PyMuPDFpdfplumber
    • 大语言模型 API 调用:通过火山引擎(ByteDance)提供的 Ark runtime SDK,与 LLM(例如参考 https://www.volcengine.com/docs/82379/1399008)交互。
    • 日志记录logging 模块,用于记录处理过程和错误信息。
  • 前端组件(GUI)

    • tkinter:Python内置的GUI库,用于构建基本的图形化界面。
  • 数据结构与处理逻辑

    • 文本与PDF内容通过 MainApp 类进行统一管理。
    • LLM处理结果(摘要、关键词、翻译内容)通过 TranslatorLLMClient 类获得并整合。

环境配置与运行步骤

  1. 环境变量与API Key设置: 请按照火山引擎智能语言服务文档进行环境变量配置(如 API_KEYAPI_SECRET)。参考链接中说明可使用 test-env.py 来检测环境变量是否已正确设置。执行:

    python test-env.py
    

    若有正确输出则表明环境变量配置无误。

  2. 安装依赖: 确保已安装必要的依赖:

    pip install PyMuPDF pdfplumber tkinter  # tkinter在部分系统中可能已内置
    pip install volcenginesdkarkruntime
    

    其他依赖根据 requirements.txt 安装。

  3. 测试后端功能: 如需仅在终端进行简单测试,可在项目根目录执行(假设main.py已存在并配置正确):

    python main.py
    

    这将使用内置示例文本执行 LLM 处理,并在 ../result 目录下生成结果文件。

  4. 运行 GUI: 在确认 main.py 及后端逻辑正常运行后,运行:

    python ui-translator.py
    

    将弹出 GUI 界面。

    • 选择模式(PDF 或 文本)
    • 若为PDF模式,则浏览选择PDF文件
    • 若为文本模式,则在文本框中粘贴英文文本
    • 点击“开始处理”

    在处理过程中,会显示“处理中…”提示。等待完成后,会有新窗口弹出展示结果,并可在 ../result 中查看输出文件。

输出说明

  • 日志文件:在 ../log 目录,以时间戳命名的日志文件记录处理过程、错误信息等。

  • 结果文件

    • <name>_result.json:包含段落级摘要、关键词和中文翻译的结构化数据。
    • <name>_translated_paper.txt:全文中文翻译文本。
  • GUI结果窗口:显示全文翻译、核心技术总结(提取所有段落的summary_zh汇总)、关键词汇总(收集所有段落的keywords_zh)。

注意事项

  • LLM调用需确保网络连通性和API密钥配置正确。
  • 若处理长篇PDF,可能需要等待较长时间,具体取决于网络和API响应速度。
  • GUI为基础示例,可根据需要扩展更多功能,如进度条、更多模式支持、错误处理提示等。

联系与扩展

本项目为基础示例,可根据实际需求进行下列扩展:

  • 整合更多NLP特性,如语义搜索、引文分析等。
  • 优化用户界面和用户体验。
  • 增加缓存与并发处理,提高处理性能。

如有问题或建议,可联系项目维护者或在Issue中讨论。

参考资料

  • 字节跳动/火山引擎大模型 API 文档:https://www.volcengine.com/docs/82379/1399008
  • PyTesseract 文档:https://pypi.org/project/pytesseract/
  • PyPDF2 文档:https://pypdf2.readthedocs.io/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/63561.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mysql的事务控制和数据库的备份和恢复

事务控制语句 行锁和死锁 行锁 两个客户端同时对同一索引行进行操作 客户端1正常运行 客户端2想修改&#xff0c;被锁行 除非将事务提交才能继续运行 死锁 客户端1删除第5行 客户端2设置第1行为排他锁 客户端1删除行1被锁 客户端2更新行5被锁 如何避免死锁 mysql的备份和还…

Tengine:Nginx二次开发-高性能进化

前言&#xff1a;在当今的互联网时代&#xff0c;Web 服务器的性能和稳定性对于网站的成功至关重要。Nginx 以其高性能和可扩展性而闻名&#xff0c;但有时候&#xff0c;我们需要更多的特性来满足特定的业务需求。Tengine&#xff0c;作为一个由淘宝网发起的 Nginx 二次开发版…

RK3588, FFmpeg 拉流 RTSP, mpp 硬解码转RGB

RK3588 ,基于FFmpeg, 拉取RTSP,使用 mpp 实现硬解码. ⚡️ 传送 ➡️ Ubuntu x64 架构, 交叉编译aarch64 FFmpeg mppRK3588, FFmpeg 拉流 RTSP, mpp 硬解码转RGBRk3588 FFmpeg 拉流 RTSP, 硬解码转RGBRK3588 , mpp硬编码yuv, 保存MP4视频文件.

Windows 下 Anaconda的安装与配置 GPU 版

给之前的电脑安一下深度学习环境 判断是否有NVIDIA GPU Ctrl Shift Esc 打开任务管理器 带此字眼表示有 NVIDIA GPU 安装Anaconda anaconda 打开邮箱会看到下载链接 这里建议修改为其他盘,要不然下载的包和创建的环境都在C盘&#xff0c;占用空间 三个都打钩 取…

flask flask-socketio创建一个网页聊天应用

应用所需环境&#xff1a; python 3.11.11 其他 只需要通过这个命令即可 pip install flask3.1.0 Flask-SocketIO5.4.1 -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple 最好是用conda创建一个新的虚拟环境来验证 完整的pip list如下 Package Version ----…

STM32 水质水位检测项目(硬件架构)及(软件架构)

硬件选型 水位测量模块 TDS采集模块 外置ADC模块&#xff08;ADS1115&#xff09; 水位测量模块使用方法 水位测量原理 压力传感器&#xff1a;水越深压力越大 P ρgh Fps Fρgh*s P大气压 水位测量传感器本质上是一个压力测量传感器。压力的值和传感器产生的电压值是线…

服务器数据恢复—RAIDZ离线硬盘数超过热备盘数导致阵列崩溃的数据恢复案例

服务器存储数据恢复环境&#xff1a; ZFS Storage 7320存储阵列中有32块硬盘。32块硬盘分为4组&#xff0c;每组8块硬盘&#xff0c;共组建了3组RAIDZ&#xff0c;每组raid都配置了热备盘。 服务器存储故障&#xff1a; 服务器存储运行过程中突然崩溃&#xff0c;排除人为误操…

llama2中的model.py中的结构示意图

参考文章&#xff1a;https://zhuanlan.zhihu.com/p/679640407

开放词汇目标检测(Open-Vocabulary Object Detection, OVOD)综述

定义 开放词汇目标检测&#xff08;Open-Vocabulary Object Detection, OVOD&#xff09;是一种目标检测任务&#xff0c;旨在检测和识别那些未在训练集中明确标注的物体类别。传统的目标检测模型通常只能识别有限数量的预定义类别&#xff0c;而OVOD模型则具有识别“开放词汇…

Vue与React:前端框架的巅峰对决

文章目录 一、引言&#xff08;一&#xff09;前端框架发展现状简述 二、Vue 与 React 框架概述&#xff08;一&#xff09;Vue.js 简介&#xff08;二&#xff09;React.js 简介 三、开发效率对比&#xff08;一&#xff09;Vue 开发效率分析&#xff08;二&#xff09;React …

3分钟读懂数据分析的流程是什么

数据分析是基于商业目的&#xff0c;有目的地进行收集、整理、加工和分析数据&#xff0c;提炼出有价值的 信息的一个过程。整个过程大致可分为五个阶段&#xff0c;具体如下图所示。 1.明确目的和思路 在开展数据分析之前&#xff0c;我们必须要搞清楚几个问题&#xff0c;比…

词嵌入(Word Embedding):自然语言处理的基石

目录 ​编辑 词嵌入&#xff08;Word Embedding&#xff09;&#xff1a;自然语言处理的基石 引言 词嵌入的基本概念 词嵌入的主要方法 1. Word2Vec 2. GloVe 3. FastText 4. ELMo 5. BERT 词嵌入的应用场景 词嵌入的研究进展 结论 词嵌入&#xff08;Word Embedd…

AutoSarOS中调度表的概念与源代码解析

--------AutoSarOS调度表的概念 一、AutoSarOS 是什么以及调度表的重要性 AutoSar(Automotive Open System Architecture)是汽车行业的一个开放式软件架构标准哦。它就像是一种大家都遵循的规则,能让不同的软件供应商一起合作开发汽车软件,这样软件就能被重复使用,开发效…

半连接转内连接 | OceanBase SQL 查询改写

查询优化器是关系型数据库系统的核心模块&#xff0c;是数据库内核开发的重点和难点&#xff0c;也是衡量整个数据库系统成熟度的“试金石”。为了帮助大家更好地理解 OceanBase 查询优化器&#xff0c;我们撰写了查询改写系列文章&#xff0c;带大家更好地掌握查询改写的精髓&…

android opencv导入进行编译

1、直接新建module进行导入&#xff0c;选择opencv的sdk 导入module模式&#xff0c;选择下载好的sdk&#xff0c;修改module name为OpenCV490。 有报错直接解决报错&#xff0c;没报错直接运行成功。 2、解决错误&#xff0c;同步成功 一般报错是gradle版本问题较多。我的报…

通过阿里云 Milvus 与 PAI 搭建高效的检索增强对话系统

背景介绍 阿里云向量检索服务Milvus版&#xff08;简称阿里云Milvus&#xff09;是一款云上全托管服务&#xff0c;确保了了与开源Milvus的100%兼容性&#xff0c;并支持无缝迁移。在开源版本的基础上增强了可扩展性&#xff0c;能提供大规模 AI 向量数据的相似性检索服务。相…

【批量生成WORD和PDF文件】根据表格内容和模板文件批量创建word文件,一次性生成多个word文档和批量创建PDF文件

如何按照Word模板和表格的数据快速制作5000个word文档 &#xff1f; 在与客户的合作的中需要创建大量的合同&#xff0c;这些合同的模板大概都是一致的&#xff0c;是不是每次我们都需要填充不一样的数据来完成&#xff1f; 今天用表格数据完成合同模板的填充&#xff0c;批量…

Windows11 安装 Ubuntu-20.04,同时安装配置 zsh shell,配置 git 别名(alias),大大提高开发效率

背景&#xff1a;家里配置了一台 Windows 电脑&#xff0c;有时候需要用到 vscode 开发测试一些代码&#xff0c;在使用过程中发现原生 windows 敲代码不是很友好&#xff0c;于是想到配置 wsl&#xff0c;安装 Ubuntu&#xff0c;并安装配置 zsh shell&#xff0c;同时配置 gi…

鸿蒙心路旅程:HarmonyOS NEXT 心路旅程:技术、成长与未来

HarmonyOS NEXT 心路旅程&#xff1a;技术、成长与未来 技术的浪潮中&#xff0c;总有一些瞬间让人感到心潮澎湃。作为一名HarmonyOS NEXT开发者&#xff0c;我有幸成为这个时代科技创新的一部分。从最初的接触到深入学习、开发&#xff0c;以及如今规划未来的职业方向&#x…

勤研低代码平台:重塑软件开发协作新生态

在当今数字化浪潮汹涌澎湃的时代&#xff0c;软件开发的效率与质量成为企业竞争的关键因素之一。勤研低代码开发平台以创新性的实际页面 - 功能设计 - 页面设计 - 原型页面切换功能&#xff0c;脱颖而出&#xff0c;为软件开发过程中的团队协作、客户沟通以及项目推进带来了前所…