李宏毅机器学习课程知识点摘要(1-5集)

前5集

过拟合:

参数太多,导致把数据集刻画的太完整。而一旦测试集和数据集的关联不大,那么预测效果还不如模糊一点的模型

所以找的数据集的量以及准确性也会影响

由于线性函数的拟合一般般,所以用一组函数去分段来拟合

sigmoid函数是神来之笔,可以用激活函数去理解

用线性代数来引入神经网络中网络这一概念,想到i与j是不是就自然想到了网络?

sigmoid是函数,而wij就是每个函数里面的参数

先生成一个曲线,然后再把弹性的曲线相加

这里把所有的不管是什么的参量全部抽象、泛化成一个θ向量,

然后用梯度的方法来不断接近,靠update来修正

用到了哈密顿算子,g就直接是对每个参数求偏导

η在这里是学习率,可以自己设置。由于θ0是随意设的,然后减去导数乘学习率的微分,导数小就乘的小呗。

然后我们分割数据集,引入两个名词,epoch和batch

在机器学习中,epoch(周期)是指训练数据集通过模型一次的完整遍历过程。简单来说,1个epoch意味着所有的训练样本都被用来更新模型的参数一次。

batch size=example/epoch     

batch size就是一小堆有多少,分成一堆一堆的。最好要分的均匀,不然每个的bias不一样

另一种激活函数,ReLU。两者被统称为activation function(还有其他的)

sigmoid是一个非线性函数,

Sigmoid 其实不是一个线性的函数,它是一个 **非线性** 函数。让我们深入分析一下:

 Sigmoid 函数的数学形式:
Sigmoid 函数(也称为 logistic 函数)的数学表达式为:

$$
\sigma(x) = \frac{1}{1 + e^{-x}}
$$

这个函数的形状是一个“S”形曲线,输出值的范围在 0 到 1 之间。它的关键特性包括:

- 当 \( x \to \infty \) 时,\( \sigma(x) \to 1 \)
- 当 \( x \to -\infty \) 时,\( \sigma(x) \to 0 \)
- 在 \( x = 0 \) 时,\( \sigma(x) = 0.5 \)

Sigmoid 函数的非线性特性:

曲线形状:

Sigmoid 函数的输出是平滑的 S 型曲线,即它在输入值很大或很小时趋近于常数(0 或 1),而在输入值接近 0 时变化最快。
 

一般我们会选择ReLU

这里选择function不断的进行更新之后,多做几次多做几次

每一层中可以有很多个的ReLU

最后我们就给他赋予一个名字——神经网络

每一个激活函数就是神经元

假设你有一个简单的神经网络,包括一个输入层和一个隐藏层:

### 输入:
\( x_1, x_2 \)(可能是原始数据或前一层的输出)

### 权重:
\( w_1, w_2 \)

### 偏置:
\( b \)

### 激活函数:
假设我们使用 **ReLU** 激活函数。

那么每个隐藏层神经元的计算过程是:

1. **加权求和**:
   $$
   z = w_1 \cdot x_1 + w_2 \cdot x_2 + b
   $$

2. **激活函数**:
   $$
   \text{output} = \text{ReLU}(z)
   $$

在这里,**ReLU** 就是激活函数,它决定了神经元的输出。

---

### 总结:

- **神经元** 是神经网络中的基本单元,负责接收输入、进行计算和输出结果。
- **激活函数** 是神经元中的一个部分,它对神经元的计算结果进行非线性变换,从而使神经网络能够学习复杂的模式。
 

layer就是neuron

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/60685.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

七、SElinux

一、SElinux简介 SELinux是Security-Enhanced Linux的缩写,意思是安全强化的linuxSELinux 主要由美国国家安全局(NSA)开发,当初开发的目的是为了避免资源的误用传统的访问控制在我们开启权限后,系统进程可以直接访问当我们对权限设置不严谨时…

小程序25- iconfont 字体图标的使用

项目中使用到图标,一般由公司设计进行设计,设计好后上传到阿里巴巴矢量图标库 日常开发过程中,也可以通过 iconfont 图标库下载使用自带的图标 补充:使用 iconfont 图标库报错:Failed to load font 操作步骤&#xff…

鸢尾花植物的结构认识和Python中scikit-learn工具包的安装

鸢尾花植物的结构认识和Python中scikit-learn工具包的安装 鸢尾花植物的结构认识和Python中scikit-learn工具包的安装 鸢尾花植物的结构认识和Python中scikit-learn工具包的安装一、鸢尾花的认识1.1 对花结构和功能认识1.2、鸢尾花认识1.2.1 鸢尾花种类1.2.2 鸢尾花结构 二. Py…

Unity3D 截图

使用 Unity3D 自带的截图接口,制作截图工具。 截图 有时候我们想对 Unity 的窗口进行截图,如果直接使用一些截图工具,很难截取到一张完整分辨率的图片(例如,我们想要截取一张 1920 * 1080 的图片)。 其实…

Mysql的加锁情况详解

最近在复习mysql的知识点,像索引、优化、主从复制这些很容易就激活了脑海里尘封的知识,但是在mysql锁的这一块真的是忘的一干二净,一点映像都没有,感觉也有点太难理解了,但是还是想把这块给啃下来,于是想通…

丹摩征文活动 | AI创新之路,DAMODEL助你一臂之力GPU

目录 前言—— DAMODEL(丹摩智算) 算力服务 直观的感受算力提供商的强大​ 平台功能介绍​ 镜像选择 云磁盘创建 总结 前言—— 只需轻点鼠标,开发者便可拥有属于自己的AI计算王国 - 从丰富的GPU实例选择,到高性能的云磁盘,再到预配置的深度学习…

Linux之日志

日志 在编写网络服务器, 各种软件时, 程序一定要打印一些日志信息. 1. 可以向显示器打印, 也可以向文件中写入. 2. 日志是软件在运行时记录的流水账, 用于排查服务进程挂掉的信息. 其中必须要有的是: 日志等级, 时间, 日志内容.可选的是文件名, 代码行数, 进程pid 等 日志…

IDEA指定Maven的settings不生效问题处理

文章目录 一、问题描述二、问题分析三、问题解决 一、问题描述 在Idea中手动指定了maven的settings配置文件,但是一直没生效。 如下图:设置加载settings-aliyun.xml文件,但是最后发现还是在加载settings.xml文件 二、问题分析 ‌在Intel…

【软考】数据库

1. 数据模型 1.1 概念数据模型 概念数据模型一般用 E-R 图表示,常用术语如下: 实体:客观存在的事物,如:一个单位、一个职工、一个部门、一个项目。属性:学生实体有学号、姓名、出生日期等属性。码&#…

oneplus6线刷、trwp、magisk(apatch)、LSPosed、Shamiko、Hide My Applist

oneplus6线刷android10.0.1 oneplus6线刷包(官方android10.0.1)下载、线刷教程: OnePlus6-brick-enchilada_22_K_52_210716_repack-HOS-10_0_11-zip 启用开发者模式 设置 / 连续点击6次版本号 : 启用开发者模式设置/开发者模式/{打开 usb调试, 打开 网络adb调试,…

ByteBuffer模拟拆包输出消息字符串

以下代码模拟网络编程中的粘包现象,用\n进行分割消息块 源码 public static void main(String[] args) {ByteBuffer byteBuffer1 ByteBuffer.allocate(60) ;byteBuffer1.put("Hello World\nWhat is you name?\nI am Licky!\nHo".getBytes());splice(byt…

成都睿明智科技有限公司怎么样可靠不?

在这个日新月异的数字时代,电商行业如同一股不可阻挡的洪流,席卷着每一个消费者的生活。而抖音,作为短视频与电商完美融合的典范,更是为无数商家开辟了一片全新的蓝海。在这片充满机遇与挑战的海洋中,成都睿明智科技有…

【计算机网络】多路转接之epoll

epoll也是一种linux中的多路转接方案(epoll也是只负责IO过程中的"等") 一、epoll相关接口的使用 1.epoll_create int epoll_create(int size); ​功能:创建一个epoll模型 ① int size:没意义了 >0就行 返回值:返回一个文件…

Linux高阶——1117—TCP客户端服务端

目录 1、sock.h socket常用函数 网络初始化函数 首次响应函数 测试IO处理函数 获取时间函数 总代码 2、sock.c SOCKET() ACCEPT()——服务端使用这个函数等待客户端连接 CONNECT()——客户端使用这个函数连接服务端 BIND()——一般只有服务端使用 LISTEN()——服务端…

【SVN和GIT】版本控制系统详细下载使用教程

文章目录 ** 参考文章一、什么是SVN和GIT二、软件使用介绍1 SVN安装1.1 服务端SVN下载地址1.2 客户端SVN下载地址2 SVN使用2.1 服务端SVN基础使用2.1.1 创建存储库和用户成员2.1.2 为存储库添加访问人员2.2 客户端SVN基础使用2.2.1 在本地下载库中的内容2.2.2 版本文件操作--更…

【含文档】基于django+Vue的荣誉证书管理系统(含源码+数据库+lw)

1.开发环境 开发系统:Windows10/11 架构模式:MVC/前后端分离 JDK版本: Java JDK1.8 开发工具:IDEA 数据库版本: mysql5.7或8.0 数据库可视化工具: navicat 主要技术: django,mysql,vue 2.视频演示地址 3.功能 系统定义了三个角色:管理员和学生和教师。 管理员进…

ros2学习日记_241124_ros相关链接

前言 提醒: 文章内容为方便作者自己后日复习与查阅而进行的书写与发布,其中引用内容都会使用链接表明出处(如有侵权问题,请及时联系)。 其中内容多为一次书写,缺少检查与订正,如有问题或其他拓展…

AIGC-------AIGC在社交媒体内容生成中的应用

AIGC在社交媒体内容生成中的应用 引言 随着人工智能生成内容(AIGC)的快速发展,社交媒体平台上的内容创作方式发生了巨大变化。AIGC使得内容创作的门槛大大降低,从而让更多的人能够参与到社交媒体内容的创作中,同时也使…

GWO-SVMD分解 | Matlab实现GWO-SVMD灰狼算法优化逐次变分模态分解

GWO-SVMD分解 | Matlab实现GWO-SVMD灰狼算法优化逐次变分模态分解 目录 GWO-SVMD分解 | Matlab实现GWO-SVMD灰狼算法优化逐次变分模态分解效果一览基本介绍程序设计参考资料 效果一览 基本介绍 GWO-SVMD灰狼算法优化逐次变分模态分解 内有15种用以优化svmd的适应度函数&#…

意识与人工智能:德国语言学家Joscha Bach的“梦境意识”理论探讨

引言 在人类的科学探索中,意识无疑是最深奥的未解之谜之一。尽管我们可以清晰地感知到自己的存在和思维,但意识究竟是什么?它从何而来?是否是物理世界的产物?以及人工智能是否能拥有意识?这些问题一直困扰…