Llama-7b-Chinese本地推理

Llama-7b-Chinese 本地推理

基础环境信息(wsl2安装Ubuntu22.04 + miniconda)

使用miniconda搭建环境

(base) :~$ conda create --name Llama-7b-Chinese  python=3.10
Channels:- defaults
Platform: linux-64
Collecting package metadata (repodata.json): done
Solving environment: done## Package Plan ##environment location: /home/chop/miniconda3/envs/Llama-7b-Chineseadded / updated specs:- python=3.10The following NEW packages will be INSTALLED:_libgcc_mutex      anaconda/pkgs/main/linux-64::_libgcc_mutex-0.1-main_openmp_mutex      anaconda/pkgs/main/linux-64::_openmp_mutex-5.1-1_gnubzip2              anaconda/pkgs/main/linux-64::bzip2-1.0.8-h5eee18b_5ca-certificates    anaconda/pkgs/main/linux-64::ca-certificates-2024.3.11-h06a4308_0ld_impl_linux-64   anaconda/pkgs/main/linux-64::ld_impl_linux-64-2.38-h1181459_1libffi             anaconda/pkgs/main/linux-64::libffi-3.4.4-h6a678d5_0libgcc-ng          anaconda/pkgs/main/linux-64::libgcc-ng-11.2.0-h1234567_1libgomp            anaconda/pkgs/main/linux-64::libgomp-11.2.0-h1234567_1libstdcxx-ng       anaconda/pkgs/main/linux-64::libstdcxx-ng-11.2.0-h1234567_1libuuid            anaconda/pkgs/main/linux-64::libuuid-1.41.5-h5eee18b_0ncurses            anaconda/pkgs/main/linux-64::ncurses-6.4-h6a678d5_0openssl            anaconda/pkgs/main/linux-64::openssl-3.0.13-h7f8727e_0pip                anaconda/pkgs/main/linux-64::pip-23.3.1-py310h06a4308_0python             anaconda/pkgs/main/linux-64::python-3.10.14-h955ad1f_0readline           anaconda/pkgs/main/linux-64::readline-8.2-h5eee18b_0setuptools         anaconda/pkgs/main/linux-64::setuptools-68.2.2-py310h06a4308_0sqlite             anaconda/pkgs/main/linux-64::sqlite-3.41.2-h5eee18b_0tk                 anaconda/pkgs/main/linux-64::tk-8.6.12-h1ccaba5_0tzdata             anaconda/pkgs/main/noarch::tzdata-2024a-h04d1e81_0wheel              anaconda/pkgs/main/linux-64::wheel-0.41.2-py310h06a4308_0xz                 anaconda/pkgs/main/linux-64::xz-5.4.6-h5eee18b_0zlib               anaconda/pkgs/main/linux-64::zlib-1.2.13-h5eee18b_0Proceed ([y]/n)? yDownloading and Extracting Packages:Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
# To activate this environment, use
#
#     $ conda activate Llama-7b-Chinese
#
# To deactivate an active environment, use
#
#     $ conda deactivate(base) :~$ conda activate Llama-7b-Chinese

下载llama.cpp

(Llama-7b-Chinese) :~/newmodels$git init
(Llama-7b-Chinese) :~/newmodels$ git clone https://github.com/ggerganov/llama.cpp.git
(Llama-7b-Chinese) :~/newmodels$ cd llama.cpp/
(Llama-7b-Chinese) :~/newmodels/llama.cpp$ ls
CMakeLists.txt     common.o                       ggml-backend.c    ggml-sycl.h                  llama.o           sampling.o
LICENSE            console.o                      ggml-backend.h    ggml-vulkan-shaders.hpp      llama2-tuili.py   save-load-state
Makefile           convert-hf-to-gguf.py          ggml-backend.o    ggml-vulkan.cpp              llava-cli         scripts
Package.swift      convert-llama-ggml-to-gguf.py  ggml-cuda.cu      ggml-vulkan.h                lookahead         server
README-Origin.md   convert-llama2c-to-ggml        ggml-cuda.h       ggml.c                       lookup            simple
README-sycl.md     convert-lora-to-ggml.py        ggml-cuda.o       ggml.h                       main              speculative
README.md          convert-persimmon-to-gguf.py   ggml-impl.h       ggml.o                       main.log          spm-headers
SHA256SUMS         convert.py                     ggml-kompute.cpp  ggml_vk_generate_shaders.py  media             stage_1_convert.sh
awq-py             direct_trainsformers.py        ggml-kompute.h    gguf                         models            stage_5_test_token.sh
baby-llama         docs                           ggml-metal.h      gguf-py                      mypy.ini          tests
batched            embedding                      ggml-metal.m      grammar-parser.o             parallel          tokenize
batched-bench      examples                       ggml-metal.metal  grammars                     passkey           train-text-from-scratch
beam-search        export-lora                    ggml-mpi.c        imatrix                      perplexity        train.o
benchmark-matmult  finetune                       ggml-mpi.h        infill                       pocs              unicode.h
build-info.o       flake.lock                     ggml-opencl.cpp   kompute                      prompts           vdot
build.zig          flake.nix                      ggml-opencl.h     kompute-shaders              q8dot             zh-models
ci                 ggml-alloc.c                   ggml-quants.c     libllava.a                   quantize
cmake              ggml-alloc.h                   ggml-quants.h     llama-bench                  quantize-stats
codecov.yml        ggml-alloc.o                   ggml-quants.o     llama.cpp                    requirements
common             ggml-backend-impl.h            ggml-sycl.cpp     llama.h                      requirements.txt
(Llama-7b-Chinese) :~/newmodels/llama.cpp$

安装所需要的软件包


(Llama-7b-Chinese) :~/newmodels/llama.cpp$ ls
AUTHORS            convert-hf-to-gguf.py          ggml-common.h            ggml-vulkan.h                llava-cli         retrieval
CMakeLists.txt     convert-llama-ggml-to-gguf.py  ggml-cuda                ggml.c                       lookahead         sampling.o
LICENSE            convert-llama2c-to-ggml        ggml-cuda.cu             ggml.h                       lookup            save-load-state
Makefile           convert-lora-to-ggml.py        ggml-cuda.h              ggml.o                       lookup-create     scripts
Package.swift      convert-persimmon-to-gguf.py   ggml-impl.h              ggml_vk_generate_shaders.py  lookup-merge      server
README-sycl.md     convert.py                     ggml-kompute.cpp         gguf                         lookup-stats      sgemm.cpp
README.md          docs                           ggml-kompute.h           gguf-py                      main              sgemm.h
SECURITY.md        embedding                      ggml-metal.h             gguf-split                   media             simple
baby-llama         eval-callback                  ggml-metal.m             grammar-parser.o             models            speculative
batched            examples                       ggml-metal.metal         grammars                     mypy.ini          spm-headers
batched-bench      export-lora                    ggml-mpi.c               gritlm                       ngram-cache.o     tests
beam-search        finetune                       ggml-mpi.h               imatrix                      parallel          tokenize
benchmark-matmult  flake.lock                     ggml-opencl.cpp          infill                       passkey           train-text-from-scratch
build-info.o       flake.nix                      ggml-opencl.h            json-schema-to-grammar.o     perplexity        train.o
build.zig          ggml-alloc.c                   ggml-quants.c            kompute                      pocs              unicode-data.cpp
ci                 ggml-alloc.h                   ggml-quants.h            kompute-shaders              prompts           unicode-data.h
cmake              ggml-alloc.o                   ggml-quants.o            libllava.a                   q8dot             unicode-data.o
codecov.yml        ggml-backend-impl.h            ggml-sycl.cpp            llama-bench                  quantize          unicode.cpp
common             ggml-backend.c                 ggml-sycl.h              llama.cpp                    quantize-stats    unicode.h
common.o           ggml-backend.h                 ggml-vulkan-shaders.hpp  llama.h                      requirements      unicode.o
console.o          ggml-backend.o                 ggml-vulkan.cpp          llama.o                      requirements.txt  vdot
(Llama-7b-Chinese) :~/Chinese-LLaMA-Alpaca/llama.cpp$ pip install -r requirements.txt
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Collecting numpy~=1.24.4 (from -r ./requirements/requirements-convert.txt (line 1))Downloading https://pypi.tuna.tsinghua.edu.cn/packages/10/be/ae5bf4737cb79ba437879915791f6f26d92583c738d7d960ad94e5c36adf/numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 17.3/17.3 MB 3.5 MB/s eta 0:00:00
Collecting sentencepiece~=0.1.98 (from -r ./requirements/requirements-convert.txt (line 2))Downloading https://pypi.tuna.tsinghua.edu.cn/packages/7f/e5/323dc813b3e1339305f888d035e2f3725084fc4dcf051995b366dd26cc90/sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.3/1.3 MB 2.8 MB/s eta 0:00:00
Requirement already satisfied: transformers<5.0.0,>=4.35.2 in /home/chop/.local/lib/python3.10/site-packages (from -r ./requirements/requirements-convert.txt (line 3)) (4.39.0)
Collecting gguf>=0.1.0 (from -r ./requirements/requirements-convert.txt (line 4))Downloading https://pypi.tuna.tsinghua.edu.cn/packages/97/a4/83969343abb00fe787de5965c5c1f617aa51b2e2c563d4391c402aba548f/gguf-0.6.0-py3-none-any.whl (23 kB)
Collecting protobuf<5.0.0,>=4.21.0 (from -r ./requirements/requirements-convert.txt (line 5))Downloading https://pypi.tuna.tsinghua.edu.cn/packages/15/db/7f731524fe0e56c6b2eb57d05b55d3badd80ef7d1f1ed59db191b2fdd8ab/protobuf-4.25.3-cp37-abi3-manylinux2014_x86_64.whl (294 kB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 294.6/294.6 kB 2.0 MB/s eta 0:00:00
Collecting torch~=2.1.1 (from -r ./requirements/requirements-convert-hf-to-gguf.txt (line 2))Using cached https://pypi.tuna.tsinghua.edu.cn/packages/03/f1/13137340776dd5d5bcfd2574c9c6dfcc7618285035cd77240496e5c1a79b/torch-2.1.2-cp310-cp310-manylinux1_x86_64.whl (670.2 MB)
Collecting einops~=0.7.0 (from -r ./requirements/requirements-convert-hf-to-gguf.txt (line 3))Using cached https://pypi.tuna.tsinghua.edu.cn/packages/29/0b/2d1c0ebfd092e25935b86509a9a817159212d82aa43d7fb07eca4eeff2c2/einops-0.7.0-py3-none-any.whl (44 kB)
Requirement already satisfied: filelock in /home/chop/.local/lib/python3.10/site-packages (from transformers<5.0.0,>=4.35.2->-r ./requirements/requirements-convert.txt (line 3)) (3.13.4)
Requirement already satisfied: huggingface-hub<1.0,>=0.19.3 in /home/chop/.local/lib/python3.10/site-packages (from transformers<5.0.0,>=4.35.2->-r ./requirements/requirements-convert.txt (line 3)) (0.22.2)
Requirement already satisfied: packaging>=20.0 in /home/chop/.local/lib/python3.10/site-packages (from transformers<5.0.0,>=4.35.2->-r ./requirements/requirements-convert.txt (line 3)) (24.0)
Collecting pyyaml>=5.1 (from transformers<5.0.0,>=4.35.2->-r ./requirements/requirements-convert.txt (line 3))Using cached https://pypi.tuna.tsinghua.edu.cn/packages/29/61/bf33c6c85c55bc45a29eee3195848ff2d518d84735eb0e2d8cb42e0d285e/PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (705 kB)
Requirement already satisfied: regex!=2019.12.17 in /home/chop/.local/lib/python3.10/site-packages (from transformers<5.0.0,>=4.35.2->-r ./requirements/requirements-convert.txt (line 3)) (2024.4.16)
Requirement already satisfied: requests in /home/chop/.local/lib/python3.10/site-packages (from transformers<5.0.0,>=4.35.2->-r ./requirements/requirements-convert.txt (line 3)) (2.31.0)
Requirement already satisfied: tokenizers<0.19,>=0.14 in /home/chop/.local/lib/python3.10/site-packages (from transformers<5.0.0,>=4.35.2->-r ./requirements/requirements-convert.txt (line 3)) (0.15.2)
Requirement already satisfied: safetensors>=0.4.1 in /home/chop/.local/lib/python3.10/site-packages (from transformers<5.0.0,>=4.35.2->-r ./requirements/requirements-convert.txt (line 3)) (0.4.3)
Requirement already satisfied: tqdm>=4.27 in /home/chop/.local/lib/python3.10/site-packages (from transformers<5.0.0,>=4.35.2->-r ./requirements/requirements-convert.txt (line 3)) (4.66.2)
Requirement already satisfied: typing-extensions in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (4.11.0)
Requirement already satisfied: sympy in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (1.12)
Requirement already satisfied: networkx in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (3.3)
Requirement already satisfied: jinja2 in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (3.1.3)
Requirement already satisfied: fsspec in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (2024.3.1)
Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (12.1.105)
Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (12.1.105)
Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (12.1.105)
Requirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (8.9.2.26)
Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (12.1.3.1)
Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (11.0.2.54)
Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (10.3.2.106)
Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (11.4.5.107)
Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (12.1.0.106)
Collecting nvidia-nccl-cu12==2.18.1 (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2))Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a4/05/23f8f38eec3d28e4915725b233c24d8f1a33cb6540a882f7b54be1befa02/nvidia_nccl_cu12-2.18.1-py3-none-manylinux1_x86_64.whl (209.8 MB)
Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (12.1.105)
Collecting triton==2.1.0 (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2))Using cached https://pypi.tuna.tsinghua.edu.cn/packages/4d/22/91a8af421c8a8902dde76e6ef3db01b258af16c53d81e8c0d0dc13900a9e/triton-2.1.0-0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (89.2 MB)
Requirement already satisfied: nvidia-nvjitlink-cu12 in /home/chop/.local/lib/python3.10/site-packages (from nvidia-cusolver-cu12==11.4.5.107->torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (12.4.127)
Requirement already satisfied: MarkupSafe>=2.0 in /home/chop/.local/lib/python3.10/site-packages (from jinja2->torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (2.1.5)
Requirement already satisfied: charset-normalizer<4,>=2 in /home/chop/.local/lib/python3.10/site-packages (from requests->transformers<5.0.0,>=4.35.2->-r ./requirements/requirements-convert.txt (line 3)) (3.3.2)
Requirement already satisfied: idna<4,>=2.5 in /home/chop/.local/lib/python3.10/site-packages (from requests->transformers<5.0.0,>=4.35.2->-r ./requirements/requirements-convert.txt (line 3)) (3.7)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/chop/.local/lib/python3.10/site-packages (from requests->transformers<5.0.0,>=4.35.2->-r ./requirements/requirements-convert.txt (line 3)) (2.2.1)
Requirement already satisfied: certifi>=2017.4.17 in /home/chop/.local/lib/python3.10/site-packages (from requests->transformers<5.0.0,>=4.35.2->-r ./requirements/requirements-convert.txt (line 3)) (2024.2.2)
Requirement already satisfied: mpmath>=0.19 in /home/chop/.local/lib/python3.10/site-packages (from sympy->torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (1.3.0)
Installing collected packages: sentencepiece, triton, pyyaml, protobuf, nvidia-nccl-cu12, numpy, einops, gguf, torchAttempting uninstall: sentencepieceFound existing installation: sentencepiece 0.2.0Uninstalling sentencepiece-0.2.0:Successfully uninstalled sentencepiece-0.2.0Attempting uninstall: protobufFound existing installation: protobuf 5.26.1Uninstalling protobuf-5.26.1:Successfully uninstalled protobuf-5.26.1Attempting uninstall: numpyFound existing installation: numpy 1.26.4Uninstalling numpy-1.26.4:Successfully uninstalled numpy-1.26.4
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
matplotlib 3.8.4 requires pyparsing>=2.3.1, which is not installed.
tensorboard 2.16.2 requires six>1.9, which is not installed.
Successfully installed einops-0.7.0 gguf-0.6.0 numpy-1.24.4 nvidia-nccl-cu12-2.18.1 protobuf-4.25.3 pyyaml-6.0.1 sentencepiece-0.1.99 torch-2.1.2 triton-2.1.0
(Llama-7b-Chinese) :~/Chinese-LLaMA-Alpaca/llama.cpp$ pip install pyparsing
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Collecting pyparsingUsing cached https://pypi.tuna.tsinghua.edu.cn/packages/9d/ea/6d76df31432a0e6fdf81681a895f009a4bb47b3c39036db3e1b528191d52/pyparsing-3.1.2-py3-none-any.whl (103 kB)
Installing collected packages: pyparsing
Successfully installed pyparsing-3.1.2
(Llama-7b-Chinese) :~/Chinese-LLaMA-Alpaca/llama.cpp$ pip install matplotlib
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Requirement already satisfied: matplotlib in /home/chop/.local/lib/python3.10/site-packages (3.8.4)
Requirement already satisfied: contourpy>=1.0.1 in /home/chop/.local/lib/python3.10/site-packages (from matplotlib) (1.2.1)
Requirement already satisfied: cycler>=0.10 in /home/chop/.local/lib/python3.10/site-packages (from matplotlib) (0.12.1)
Requirement already satisfied: fonttools>=4.22.0 in /home/chop/.local/lib/python3.10/site-packages (from matplotlib) (4.51.0)
Requirement already satisfied: kiwisolver>=1.3.1 in /home/chop/.local/lib/python3.10/site-packages (from matplotlib) (1.4.5)
Requirement already satisfied: numpy>=1.21 in /home/chop/miniconda3/envs/Llama-7b-Chinese/lib/python3.10/site-packages (from matplotlib) (1.24.4)
Requirement already satisfied: packaging>=20.0 in /home/chop/.local/lib/python3.10/site-packages (from matplotlib) (24.0)
Requirement already satisfied: pillow>=8 in /home/chop/.local/lib/python3.10/site-packages (from matplotlib) (10.3.0)
Requirement already satisfied: pyparsing>=2.3.1 in /home/chop/miniconda3/envs/Llama-7b-Chinese/lib/python3.10/site-packages (from matplotlib) (3.1.2)
Requirement already satisfied: python-dateutil>=2.7 in /home/chop/.local/lib/python3.10/site-packages (from matplotlib) (2.9.0.post0)
Collecting six>=1.5 (from python-dateutil>=2.7->matplotlib)Using cached https://pypi.tuna.tsinghua.edu.cn/packages/d9/5a/e7c31adbe875f2abbb91bd84cf2dc52d792b5a01506781dbcf25c91daf11/six-1.16.0-py2.py3-none-any.whl (11 kB)
Installing collected packages: six
Successfully installed six-1.16.0
(Llama-7b-Chinese) :~/Chinese-LLaMA-Alpaca/llama.cpp$ pip install six
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Requirement already satisfied: six in /home/chop/miniconda3/envs/Llama-7b-Chinese/lib/python3.10/site-packages (1.16.0)
(Llama-7b-Chinese) :~/Chinese-LLaMA-Alpaca/llama.cpp$ pip install tensorboard
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Requirement already satisfied: tensorboard in /home/chop/.local/lib/python3.10/site-packages (2.16.2)
Requirement already satisfied: absl-py>=0.4 in /home/chop/.local/lib/python3.10/site-packages (from tensorboard) (2.1.0)
Requirement already satisfied: grpcio>=1.48.2 in /home/chop/.local/lib/python3.10/site-packages (from tensorboard) (1.62.2)
Requirement already satisfied: markdown>=2.6.8 in /home/chop/.local/lib/python3.10/site-packages (from tensorboard) (3.6)
Requirement already satisfied: numpy>=1.12.0 in /home/chop/miniconda3/envs/Llama-7b-Chinese/lib/python3.10/site-packages (from tensorboard) (1.24.4)
Requirement already satisfied: protobuf!=4.24.0,>=3.19.6 in /home/chop/miniconda3/envs/Llama-7b-Chinese/lib/python3.10/site-packages (from tensorboard) (4.25.3)
Requirement already satisfied: setuptools>=41.0.0 in /home/chop/miniconda3/envs/Llama-7b-Chinese/lib/python3.10/site-packages (from tensorboard) (68.2.2)
Requirement already satisfied: six>1.9 in /home/chop/miniconda3/envs/Llama-7b-Chinese/lib/python3.10/site-packages (from tensorboard) (1.16.0)
Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /home/chop/.local/lib/python3.10/site-packages (from tensorboard) (0.7.2)
Requirement already satisfied: werkzeug>=1.0.1 in /home/chop/.local/lib/python3.10/site-packages (from tensorboard) (3.0.2)
Requirement already satisfied: MarkupSafe>=2.1.1 in /home/chop/.local/lib/python3.10/site-packages (from werkzeug>=1.0.1->tensorboard) (2.1.5)
(Llama-7b-Chinese) :~/Chinese-LLaMA-Alpaca/llama.cpp$ pip list
Package                   Version
------------------------- -----------
absl-py                   2.1.0
accelerate                0.27.2
aiofiles                  23.2.1
aiohttp                   3.9.5
aiosignal                 1.3.1
altair                    5.3.0
annotated-types           0.6.0
anyio                     4.3.0
async-timeout             4.0.3
attrs                     23.2.0
bitsandbytes              0.42.0
certifi                   2024.2.2
charset-normalizer        3.3.2
click                     8.1.7
contourpy                 1.2.1
cycler                    0.12.1
datasets                  2.19.0
dill                      0.3.8
einops                    0.7.0
evaluate                  0.4.1
exceptiongroup            1.2.1
fastapi                   0.110.2
ffmpy                     0.3.2
filelock                  3.13.4
fonttools                 4.51.0
frozenlist                1.4.1
fsspec                    2024.3.1
gekko                     1.0.6
gguf                      0.6.0
gradio                    4.27.0
gradio_client             0.15.1
grpcio                    1.62.2
h11                       0.14.0
httpcore                  1.0.5
httpx                     0.27.0
huggingface-hub           0.22.2
idna                      3.7
importlib_resources       6.4.0
iniconfig                 2.0.0
Jinja2                    3.1.3
joblib                    1.4.0
jsonschema                4.21.1
jsonschema-specifications 2023.12.1
kiwisolver                1.4.5
Markdown                  3.6
markdown-it-py            3.0.0
MarkupSafe                2.1.5
matplotlib                3.8.4
mdurl                     0.1.2
mpmath                    1.3.0
multidict                 6.0.5
multiprocess              0.70.16
networkx                  3.3
numpy                     1.24.4
nvidia-cublas-cu12        12.1.3.1
nvidia-cuda-cupti-cu12    12.1.105
nvidia-cuda-nvrtc-cu12    12.1.105
nvidia-cuda-runtime-cu12  12.1.105
nvidia-cudnn-cu12         8.9.2.26
nvidia-cufft-cu12         11.0.2.54
nvidia-curand-cu12        10.3.2.106
nvidia-cusolver-cu12      11.4.5.107
nvidia-cusparse-cu12      12.1.0.106
nvidia-nccl-cu12          2.18.1
nvidia-nvjitlink-cu12     12.4.127
nvidia-nvtx-cu12          12.1.105
orjson                    3.10.1
packaging                 24.0
pandas                    2.2.2
peft                      0.8.2
pillow                    10.3.0
pip                       23.3.1
pluggy                    1.5.0
protobuf                  4.25.3
psutil                    5.9.8
pyarrow                   16.0.0
pyarrow-hotfix            0.6
pydantic                  2.7.0
pydantic_core             2.18.1
pydub                     0.25.1
Pygments                  2.17.2
pyparsing                 3.1.2
pytest                    8.1.1
python-dateutil           2.9.0.post0
python-multipart          0.0.9
pytz                      2024.1
PyYAML                    6.0.1
referencing               0.34.0
regex                     2024.4.16
requests                  2.31.0
responses                 0.18.0
rich                      13.7.1
rpds-py                   0.18.0
ruff                      0.4.1
safetensors               0.4.3
scikit-learn              1.4.2
scipy                     1.13.0
semantic-version          2.10.0
sentencepiece             0.1.99
setuptools                68.2.2
shellingham               1.5.4
six                       1.16.0
sniffio                   1.3.1
starlette                 0.37.2
sympy                     1.12
tensorboard               2.16.2
tensorboard-data-server   0.7.2
threadpoolctl             3.4.0
tokenizers                0.15.2
tomli                     2.0.1
tomlkit                   0.12.0
toolz                     0.12.1
torch                     2.1.2
torchdata                 0.7.1
tqdm                      4.66.2
transformers              4.39.0
triton                    2.1.0
typer                     0.12.3
typing_extensions         4.11.0
tzdata                    2024.1
urllib3                   2.2.1
uvicorn                   0.29.0
websockets                11.0.3
Werkzeug                  3.0.2
wheel                     0.41.2
xxhash                    3.4.1
yarl                      1.9.4
(Llama-7b-Chinese) :~/Chinese-LLaMA-Alpaca/llama.cpp$

llama.cpp编译

使用GPU编译:(Llama-7b-Chinese) :~/newmodels/llama.cpp$ make LLAMA_CUBLAS=1 LLAMA_CUDA_NVCC=/usr/local/cuda/bin/nvccI llama.cpp build info:
I UNAME_S:   Linux
I UNAME_P:   x86_64
I UNAME_M:   x86_64
I CFLAGS:    -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c11   -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int -Werror=implicit-function-declaration -pthread -march=native -mtune=native -Wdouble-promotion
I CXXFLAGS:  -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi
I NVCCFLAGS: -use_fast_math --forward-unknown-to-host-compiler -arch=native -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_MMV_Y=1 -DK_QUANTS_PER_ITERATION=2 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128
I LDFLAGS:   -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
I CC:        cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
I CXX:       g++ (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0cc  -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c11   -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int -Werror=implicit-function-declaration -pthread -march=native -mtune=native -Wdouble-promotion    -c ggml.c -o ggml.o
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi -c llama.cpp -o llama.o
llama.cpp:7101:26: warning: no previous declaration for ‘std::vector<std::__cxx11::basic_string<char> > splitString(const string&, const std::vector<std::__cxx11::basic_string<char> >&)[-Wmissing-declarations]7101 | std::vector<std::string> splitString(const std::string& input, const std::vector<std::string>& delimiters) {|                          ^~~~~~~~~~~
llama.cpp: In function ‘std::vector<std::__cxx11::basic_string<char> > splitString(const string&, const std::vector<std::__cxx11::basic_string<char> >&)’:
llama.cpp:7104:12: warning: unused variable ‘foundPos’ [-Wunused-variable]7104 |     size_t foundPos = 0;|            ^~~~~~~~
llama.cpp: At global scope:
llama.cpp:7134:6: warning: no previous declaration for ‘bool is_spectial_token(const string&, const std::vector<std::__cxx11::basic_string<char> >&)[-Wmissing-declarations]7134 | bool is_spectial_token(const std::string & text, const std::vector<std::string>& delimiters) {|      ^~~~~~~~~~~~~~~~~
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi -c common/common.cpp -o common.o
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi -c common/sampling.cpp -o sampling.o
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi -c common/grammar-parser.cpp -o grammar-parser.o
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi -c common/build-info.cpp -o build-info.o
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi -c common/console.cpp -o console.o
/usr/local/cuda/bin/nvcc -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -use_fast_math --forward-unknown-to-host-compiler -arch=native -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_MMV_Y=1 -DK_QUANTS_PER_ITERATION=2 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128  -Wno-pedantic -Xcompiler "-Wno-array-bounds -Wno-format-truncation -Wextra-semi" -c ggml-cuda.cu -o ggml-cuda.o
cc  -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c11   -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int -Werror=implicit-function-declaration -pthread -march=native -mtune=native -Wdouble-promotion    -c ggml-alloc.c -o ggml-alloc.o
cc  -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c11   -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int -Werror=implicit-function-declaration -pthread -march=native -mtune=native -Wdouble-promotion    -c ggml-backend.c -o ggml-backend.o
cc -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c11   -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int -Werror=implicit-function-declaration -pthread -march=native -mtune=native -Wdouble-promotion     -c ggml-quants.c -o ggml-quants.o
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/main/main.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o console.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o main -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib====  Run ./main -h for help.  ====g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/quantize/quantize.cpp build-info.o ggml.o llama.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o quantize -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/quantize-stats/quantize-stats.cpp build-info.o ggml.o llama.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o quantize-stats -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/perplexity/perplexity.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o perplexity -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/imatrix/imatrix.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o imatrix -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/embedding/embedding.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o embedding -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi pocs/vdot/vdot.cpp ggml.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o vdot -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi pocs/vdot/q8dot.cpp ggml.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o q8dot -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi -c common/train.cpp -o train.o
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o train.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o train-text-from-scratch -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp ggml.o llama.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o convert-llama2c-to-ggml -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/simple/simple.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o simple -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/batched/batched.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o batched -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/batched-bench/batched-bench.cpp build-info.o ggml.o llama.o common.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o batched-bench -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/save-load-state/save-load-state.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o save-load-state -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi -Iexamples/server examples/server/server.cpp examples/llava/clip.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o server -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib   -Wno-cast-qual
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/gguf/gguf.cpp ggml.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o gguf -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/llama-bench/llama-bench.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o llama-bench -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi -static -fPIC -c examples/llava/llava.cpp -o libllava.a -Wno-cast-qual
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/llava/llava-cli.cpp examples/llava/clip.cpp examples/llava/llava.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o llava-cli -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib  -Wno-cast-qual
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/baby-llama/baby-llama.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o train.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o baby-llama -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/beam-search/beam-search.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o beam-search -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/speculative/speculative.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o speculative -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/infill/infill.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o console.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o infill -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/tokenize/tokenize.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o tokenize -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/benchmark/benchmark-matmult.cpp build-info.o ggml.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o benchmark-matmult -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/parallel/parallel.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o parallel -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/finetune/finetune.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o train.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o finetune -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/export-lora/export-lora.cpp ggml.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o export-lora -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/lookahead/lookahead.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o lookahead -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/lookup/lookup.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o lookup -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/passkey/passkey.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o passkey -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
cc -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c11   -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int -Werror=implicit-function-declaration -pthread -march=native -mtune=native -Wdouble-promotion  -c tests/test-c.c -o tests/test-c.o
(Llama-7b-Chinese) :~/newmodels/llama.cpp$

下载模型:Llama-7b-Chinese

​ 你可以从以下来源下载Llama-7b-Chinese模型。

https://github.com/LlamaFamily/Llama-Chinese?tab=readme-ov-file

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

(Llama-7b-Chinese) :~/Llama-7b-Chinese$ ls
Llama2中文社区.jpeg  checklist.chk  consolidated.00.pth     params.json              tokenizer.model          tokenizer_config.json
Llama2中文社区.txt   config.json    generation_config.json  special_tokens_map.json  tokenizer_checklist.chk

模型复制

将模型复制到llama.cpp的models目录下
(Llama-7b-Chinese) :~$ cp Llama-7b-Chinese ./newmodels/llama.cpp/models/
(Llama-7b-Chinese) :~/newmodels/llama.cpp/models$ ls
Llama-7b-Chinese          ggml-vocab-falcon.gguf    ggml-vocab-llama.gguf   ggml-vocab-stablelm-3b-4e1t.gguf
ggml-vocab-aquila.gguf    ggml-vocab-gpt-neox.gguf  ggml-vocab-mpt.gguf     ggml-vocab-starcoder.gguf
ggml-vocab-baichuan.gguf  ggml-vocab-gpt2.gguf      ggml-vocab-refact.gguf

模型转换

手动转换模型文件为GGUF格式
(Llama-7b-Chinese) :~/newmodels/llama.cpp$ python convert.py models/Llama-7b-Chinese/
Loading model file models/Llama-7b-Chinese/consolidated.00.pth
params = Params(n_vocab=32000, n_embd=4096, n_layer=32, n_ctx=2048, n_ff=11008, n_head=32, n_head_kv=32, n_experts=None, n_experts_used=None, f_norm_eps=1e-05, rope_scaling_type=None, f_rope_freq_base=None, f_rope_scale=None, n_orig_ctx=None, rope_finetuned=None, ftype=None, path_model=PosixPath('models/Llama-7b-Chinese'))
Found vocab files: {'tokenizer.model': PosixPath('models/Llama-7b-Chinese/tokenizer.model'), 'vocab.json': None, 'tokenizer.json': None}
Loading vocab file 'models/Llama-7b-Chinese/tokenizer.model', type 'spm'
Vocab info: <SentencePieceVocab with 32000 base tokens and 0 added tokens>
Special vocab info: <SpecialVocab with 0 merges, special tokens {'bos': 1, 'eos': 2, 'pad': 0}, add special tokens {'bos': True, 'eos': False}>
tok_embeddings.weight                            -> token_embd.weight                        | BF16   | [32000, 4096]
norm.weight                                      -> output_norm.weight                       | BF16   | [4096]
output.weight                                    -> output.weight                            | BF16   | [32000, 4096]
layers.0.attention.wq.weight                     -> blk.0.attn_q.weight                      | BF16   | [4096, 4096]
layers.0.attention.wk.weight                     -> blk.0.attn_k.weight                      | BF16   | [4096, 4096]
layers.0.attention.wv.weight                     -> blk.0.attn_v.weight                      | BF16   | [4096, 4096]
layers.0.attention.wo.weight                     -> blk.0.attn_output.weight                 | BF16   | [4096, 4096]
layers.0.feed_forward.w1.weight                  -> blk.0.ffn_gate.weight                    | BF16   | [11008, 4096]
layers.0.feed_forward.w2.weight                  -> blk.0.ffn_down.weight                    | BF16   | [4096, 11008]
layers.0.feed_forward.w3.weight                  -> blk.0.ffn_up.weight                      | BF16   | [11008, 4096]
layers.0.attention_norm.weight                   -> blk.0.attn_norm.weight                   | BF16   | [4096]
layers.0.ffn_norm.weight                         -> blk.0.ffn_norm.weight                    | BF16   | [4096]
layers.1.attention.wq.weight                     -> blk.1.attn_q.weight                      | BF16   | [4096, 4096]
layers.1.attention.wk.weight                     -> blk.1.attn_k.weight                      | BF16   | [4096, 4096]
layers.1.attention.wv.weight                     -> blk.1.attn_v.weight                      | BF16   | [4096, 4096]
layers.1.attention.wo.weight                     -> blk.1.attn_output.weight                 | BF16   | [4096, 4096]
layers.1.feed_forward.w1.weight                  -> blk.1.ffn_gate.weight                    | BF16   | [11008, 4096]
layers.1.feed_forward.w2.weight                  -> blk.1.ffn_down.weight                    | BF16   | [4096, 11008]
layers.1.feed_forward.w3.weight                  -> blk.1.ffn_up.weight                      | BF16   | [11008, 4096]
layers.1.attention_norm.weight                   -> blk.1.attn_norm.weight                   | BF16   | [4096]
layers.1.ffn_norm.weight                         -> blk.1.ffn_norm.weight                    | BF16   | [4096]
layers.2.attention.wq.weight                     -> blk.2.attn_q.weight                      | BF16   | [4096, 4096]
layers.2.attention.wk.weight                     -> blk.2.attn_k.weight                      | BF16   | [4096, 4096]
layers.2.attention.wv.weight                     -> blk.2.attn_v.weight                      | BF16   | [4096, 4096]
layers.2.attention.wo.weight                     -> blk.2.attn_output.weight                 | BF16   | [4096, 4096]
layers.2.feed_forward.w1.weight                  -> blk.2.ffn_gate.weight                    | BF16   | [11008, 4096]
layers.2.feed_forward.w2.weight                  -> blk.2.ffn_down.weight                    | BF16   | [4096, 11008]
layers.2.feed_forward.w3.weight                  -> blk.2.ffn_up.weight                      | BF16   | [11008, 4096]
layers.2.attention_norm.weight                   -> blk.2.attn_norm.weight                   | BF16   | [4096]
layers.2.ffn_norm.weight                         -> blk.2.ffn_norm.weight                    | BF16   | [4096]
layers.3.attention.wq.weight                     -> blk.3.attn_q.weight                      | BF16   | [4096, 4096]
layers.3.attention.wk.weight                     -> blk.3.attn_k.weight                      | BF16   | [4096, 4096]
layers.3.attention.wv.weight                     -> blk.3.attn_v.weight                      | BF16   | [4096, 4096]
layers.3.attention.wo.weight                     -> blk.3.attn_output.weight                 | BF16   | [4096, 4096]
layers.3.feed_forward.w1.weight                  -> blk.3.ffn_gate.weight                    | BF16   | [11008, 4096]
layers.3.feed_forward.w2.weight                  -> blk.3.ffn_down.weight                    | BF16   | [4096, 11008]
layers.3.feed_forward.w3.weight                  -> blk.3.ffn_up.weight                      | BF16   | [11008, 4096]
layers.3.attention_norm.weight                   -> blk.3.attn_norm.weight                   | BF16   | [4096]
layers.3.ffn_norm.weight                         -> blk.3.ffn_norm.weight                    | BF16   | [4096]
layers.4.attention.wq.weight                     -> blk.4.attn_q.weight                      | BF16   | [4096, 4096]
layers.4.attention.wk.weight                     -> blk.4.attn_k.weight                      | BF16   | [4096, 4096]
layers.4.attention.wv.weight                     -> blk.4.attn_v.weight                      | BF16   | [4096, 4096]
layers.4.attention.wo.weight                     -> blk.4.attn_output.weight                 | BF16   | [4096, 4096]
layers.4.feed_forward.w1.weight                  -> blk.4.ffn_gate.weight                    | BF16   | [11008, 4096]
layers.4.feed_forward.w2.weight                  -> blk.4.ffn_down.weight                    | BF16   | [4096, 11008]
layers.4.feed_forward.w3.weight                  -> blk.4.ffn_up.weight                      | BF16   | [11008, 4096]
layers.4.attention_norm.weight                   -> blk.4.attn_norm.weight                   | BF16   | [4096]
layers.4.ffn_norm.weight                         -> blk.4.ffn_norm.weight                    | BF16   | [4096]
layers.5.attention.wq.weight                     -> blk.5.attn_q.weight                      | BF16   | [4096, 4096]
layers.5.attention.wk.weight                     -> blk.5.attn_k.weight                      | BF16   | [4096, 4096]
layers.5.attention.wv.weight                     -> blk.5.attn_v.weight                      | BF16   | [4096, 4096]
layers.5.attention.wo.weight                     -> blk.5.attn_output.weight                 | BF16   | [4096, 4096]
layers.5.feed_forward.w1.weight                  -> blk.5.ffn_gate.weight                    | BF16   | [11008, 4096]
layers.5.feed_forward.w2.weight                  -> blk.5.ffn_down.weight                    | BF16   | [4096, 11008]
layers.5.feed_forward.w3.weight                  -> blk.5.ffn_up.weight                      | BF16   | [11008, 4096]
layers.5.attention_norm.weight                   -> blk.5.attn_norm.weight                   | BF16   | [4096]
layers.5.ffn_norm.weight                         -> blk.5.ffn_norm.weight                    | BF16   | [4096]
layers.6.attention.wq.weight                     -> blk.6.attn_q.weight                      | BF16   | [4096, 4096]
layers.6.attention.wk.weight                     -> blk.6.attn_k.weight                      | BF16   | [4096, 4096]
layers.6.attention.wv.weight                     -> blk.6.attn_v.weight                      | BF16   | [4096, 4096]
layers.6.attention.wo.weight                     -> blk.6.attn_output.weight                 | BF16   | [4096, 4096]
layers.6.feed_forward.w1.weight                  -> blk.6.ffn_gate.weight                    | BF16   | [11008, 4096]
layers.6.feed_forward.w2.weight                  -> blk.6.ffn_down.weight                    | BF16   | [4096, 11008]
layers.6.feed_forward.w3.weight                  -> blk.6.ffn_up.weight                      | BF16   | [11008, 4096]
layers.6.attention_norm.weight                   -> blk.6.attn_norm.weight                   | BF16   | [4096]
layers.6.ffn_norm.weight                         -> blk.6.ffn_norm.weight                    | BF16   | [4096]
layers.7.attention.wq.weight                     -> blk.7.attn_q.weight                      | BF16   | [4096, 4096]
layers.7.attention.wk.weight                     -> blk.7.attn_k.weight                      | BF16   | [4096, 4096]
layers.7.attention.wv.weight                     -> blk.7.attn_v.weight                      | BF16   | [4096, 4096]
layers.7.attention.wo.weight                     -> blk.7.attn_output.weight                 | BF16   | [4096, 4096]
layers.7.feed_forward.w1.weight                  -> blk.7.ffn_gate.weight                    | BF16   | [11008, 4096]
layers.7.feed_forward.w2.weight                  -> blk.7.ffn_down.weight                    | BF16   | [4096, 11008]
layers.7.feed_forward.w3.weight                  -> blk.7.ffn_up.weight                      | BF16   | [11008, 4096]
layers.7.attention_norm.weight                   -> blk.7.attn_norm.weight                   | BF16   | [4096]
layers.7.ffn_norm.weight                         -> blk.7.ffn_norm.weight                    | BF16   | [4096]
layers.8.attention.wq.weight                     -> blk.8.attn_q.weight                      | BF16   | [4096, 4096]
layers.8.attention.wk.weight                     -> blk.8.attn_k.weight                      | BF16   | [4096, 4096]
layers.8.attention.wv.weight                     -> blk.8.attn_v.weight                      | BF16   | [4096, 4096]
layers.8.attention.wo.weight                     -> blk.8.attn_output.weight                 | BF16   | [4096, 4096]
layers.8.feed_forward.w1.weight                  -> blk.8.ffn_gate.weight                    | BF16   | [11008, 4096]
layers.8.feed_forward.w2.weight                  -> blk.8.ffn_down.weight                    | BF16   | [4096, 11008]
layers.8.feed_forward.w3.weight                  -> blk.8.ffn_up.weight                      | BF16   | [11008, 4096]
layers.8.attention_norm.weight                   -> blk.8.attn_norm.weight                   | BF16   | [4096]
layers.8.ffn_norm.weight                         -> blk.8.ffn_norm.weight                    | BF16   | [4096]
layers.9.attention.wq.weight                     -> blk.9.attn_q.weight                      | BF16   | [4096, 4096]
layers.9.attention.wk.weight                     -> blk.9.attn_k.weight                      | BF16   | [4096, 4096]
layers.9.attention.wv.weight                     -> blk.9.attn_v.weight                      | BF16   | [4096, 4096]
layers.9.attention.wo.weight                     -> blk.9.attn_output.weight                 | BF16   | [4096, 4096]
layers.9.feed_forward.w1.weight                  -> blk.9.ffn_gate.weight                    | BF16   | [11008, 4096]
layers.9.feed_forward.w2.weight                  -> blk.9.ffn_down.weight                    | BF16   | [4096, 11008]
layers.9.feed_forward.w3.weight                  -> blk.9.ffn_up.weight                      | BF16   | [11008, 4096]
layers.9.attention_norm.weight                   -> blk.9.attn_norm.weight                   | BF16   | [4096]
layers.9.ffn_norm.weight                         -> blk.9.ffn_norm.weight                    | BF16   | [4096]
layers.10.attention.wq.weight                    -> blk.10.attn_q.weight                     | BF16   | [4096, 4096]
layers.10.attention.wk.weight                    -> blk.10.attn_k.weight                     | BF16   | [4096, 4096]
layers.10.attention.wv.weight                    -> blk.10.attn_v.weight                     | BF16   | [4096, 4096]
layers.10.attention.wo.weight                    -> blk.10.attn_output.weight                | BF16   | [4096, 4096]
layers.10.feed_forward.w1.weight                 -> blk.10.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.10.feed_forward.w2.weight                 -> blk.10.ffn_down.weight                   | BF16   | [4096, 11008]
layers.10.feed_forward.w3.weight                 -> blk.10.ffn_up.weight                     | BF16   | [11008, 4096]
layers.10.attention_norm.weight                  -> blk.10.attn_norm.weight                  | BF16   | [4096]
layers.10.ffn_norm.weight                        -> blk.10.ffn_norm.weight                   | BF16   | [4096]
layers.11.attention.wq.weight                    -> blk.11.attn_q.weight                     | BF16   | [4096, 4096]
layers.11.attention.wk.weight                    -> blk.11.attn_k.weight                     | BF16   | [4096, 4096]
layers.11.attention.wv.weight                    -> blk.11.attn_v.weight                     | BF16   | [4096, 4096]
layers.11.attention.wo.weight                    -> blk.11.attn_output.weight                | BF16   | [4096, 4096]
layers.11.feed_forward.w1.weight                 -> blk.11.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.11.feed_forward.w2.weight                 -> blk.11.ffn_down.weight                   | BF16   | [4096, 11008]
layers.11.feed_forward.w3.weight                 -> blk.11.ffn_up.weight                     | BF16   | [11008, 4096]
layers.11.attention_norm.weight                  -> blk.11.attn_norm.weight                  | BF16   | [4096]
layers.11.ffn_norm.weight                        -> blk.11.ffn_norm.weight                   | BF16   | [4096]
layers.12.attention.wq.weight                    -> blk.12.attn_q.weight                     | BF16   | [4096, 4096]
layers.12.attention.wk.weight                    -> blk.12.attn_k.weight                     | BF16   | [4096, 4096]
layers.12.attention.wv.weight                    -> blk.12.attn_v.weight                     | BF16   | [4096, 4096]
layers.12.attention.wo.weight                    -> blk.12.attn_output.weight                | BF16   | [4096, 4096]
layers.12.feed_forward.w1.weight                 -> blk.12.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.12.feed_forward.w2.weight                 -> blk.12.ffn_down.weight                   | BF16   | [4096, 11008]
layers.12.feed_forward.w3.weight                 -> blk.12.ffn_up.weight                     | BF16   | [11008, 4096]
layers.12.attention_norm.weight                  -> blk.12.attn_norm.weight                  | BF16   | [4096]
layers.12.ffn_norm.weight                        -> blk.12.ffn_norm.weight                   | BF16   | [4096]
layers.13.attention.wq.weight                    -> blk.13.attn_q.weight                     | BF16   | [4096, 4096]
layers.13.attention.wk.weight                    -> blk.13.attn_k.weight                     | BF16   | [4096, 4096]
layers.13.attention.wv.weight                    -> blk.13.attn_v.weight                     | BF16   | [4096, 4096]
layers.13.attention.wo.weight                    -> blk.13.attn_output.weight                | BF16   | [4096, 4096]
layers.13.feed_forward.w1.weight                 -> blk.13.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.13.feed_forward.w2.weight                 -> blk.13.ffn_down.weight                   | BF16   | [4096, 11008]
layers.13.feed_forward.w3.weight                 -> blk.13.ffn_up.weight                     | BF16   | [11008, 4096]
layers.13.attention_norm.weight                  -> blk.13.attn_norm.weight                  | BF16   | [4096]
layers.13.ffn_norm.weight                        -> blk.13.ffn_norm.weight                   | BF16   | [4096]
layers.14.attention.wq.weight                    -> blk.14.attn_q.weight                     | BF16   | [4096, 4096]
layers.14.attention.wk.weight                    -> blk.14.attn_k.weight                     | BF16   | [4096, 4096]
layers.14.attention.wv.weight                    -> blk.14.attn_v.weight                     | BF16   | [4096, 4096]
layers.14.attention.wo.weight                    -> blk.14.attn_output.weight                | BF16   | [4096, 4096]
layers.14.feed_forward.w1.weight                 -> blk.14.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.14.feed_forward.w2.weight                 -> blk.14.ffn_down.weight                   | BF16   | [4096, 11008]
layers.14.feed_forward.w3.weight                 -> blk.14.ffn_up.weight                     | BF16   | [11008, 4096]
layers.14.attention_norm.weight                  -> blk.14.attn_norm.weight                  | BF16   | [4096]
layers.14.ffn_norm.weight                        -> blk.14.ffn_norm.weight                   | BF16   | [4096]
layers.15.attention.wq.weight                    -> blk.15.attn_q.weight                     | BF16   | [4096, 4096]
layers.15.attention.wk.weight                    -> blk.15.attn_k.weight                     | BF16   | [4096, 4096]
layers.15.attention.wv.weight                    -> blk.15.attn_v.weight                     | BF16   | [4096, 4096]
layers.15.attention.wo.weight                    -> blk.15.attn_output.weight                | BF16   | [4096, 4096]
layers.15.feed_forward.w1.weight                 -> blk.15.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.15.feed_forward.w2.weight                 -> blk.15.ffn_down.weight                   | BF16   | [4096, 11008]
layers.15.feed_forward.w3.weight                 -> blk.15.ffn_up.weight                     | BF16   | [11008, 4096]
layers.15.attention_norm.weight                  -> blk.15.attn_norm.weight                  | BF16   | [4096]
layers.15.ffn_norm.weight                        -> blk.15.ffn_norm.weight                   | BF16   | [4096]
layers.16.attention.wq.weight                    -> blk.16.attn_q.weight                     | BF16   | [4096, 4096]
layers.16.attention.wk.weight                    -> blk.16.attn_k.weight                     | BF16   | [4096, 4096]
layers.16.attention.wv.weight                    -> blk.16.attn_v.weight                     | BF16   | [4096, 4096]
layers.16.attention.wo.weight                    -> blk.16.attn_output.weight                | BF16   | [4096, 4096]
layers.16.feed_forward.w1.weight                 -> blk.16.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.16.feed_forward.w2.weight                 -> blk.16.ffn_down.weight                   | BF16   | [4096, 11008]
layers.16.feed_forward.w3.weight                 -> blk.16.ffn_up.weight                     | BF16   | [11008, 4096]
layers.16.attention_norm.weight                  -> blk.16.attn_norm.weight                  | BF16   | [4096]
layers.16.ffn_norm.weight                        -> blk.16.ffn_norm.weight                   | BF16   | [4096]
layers.17.attention.wq.weight                    -> blk.17.attn_q.weight                     | BF16   | [4096, 4096]
layers.17.attention.wk.weight                    -> blk.17.attn_k.weight                     | BF16   | [4096, 4096]
layers.17.attention.wv.weight                    -> blk.17.attn_v.weight                     | BF16   | [4096, 4096]
layers.17.attention.wo.weight                    -> blk.17.attn_output.weight                | BF16   | [4096, 4096]
layers.17.feed_forward.w1.weight                 -> blk.17.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.17.feed_forward.w2.weight                 -> blk.17.ffn_down.weight                   | BF16   | [4096, 11008]
layers.17.feed_forward.w3.weight                 -> blk.17.ffn_up.weight                     | BF16   | [11008, 4096]
layers.17.attention_norm.weight                  -> blk.17.attn_norm.weight                  | BF16   | [4096]
layers.17.ffn_norm.weight                        -> blk.17.ffn_norm.weight                   | BF16   | [4096]
layers.18.attention.wq.weight                    -> blk.18.attn_q.weight                     | BF16   | [4096, 4096]
layers.18.attention.wk.weight                    -> blk.18.attn_k.weight                     | BF16   | [4096, 4096]
layers.18.attention.wv.weight                    -> blk.18.attn_v.weight                     | BF16   | [4096, 4096]
layers.18.attention.wo.weight                    -> blk.18.attn_output.weight                | BF16   | [4096, 4096]
layers.18.feed_forward.w1.weight                 -> blk.18.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.18.feed_forward.w2.weight                 -> blk.18.ffn_down.weight                   | BF16   | [4096, 11008]
layers.18.feed_forward.w3.weight                 -> blk.18.ffn_up.weight                     | BF16   | [11008, 4096]
layers.18.attention_norm.weight                  -> blk.18.attn_norm.weight                  | BF16   | [4096]
layers.18.ffn_norm.weight                        -> blk.18.ffn_norm.weight                   | BF16   | [4096]
layers.19.attention.wq.weight                    -> blk.19.attn_q.weight                     | BF16   | [4096, 4096]
layers.19.attention.wk.weight                    -> blk.19.attn_k.weight                     | BF16   | [4096, 4096]
layers.19.attention.wv.weight                    -> blk.19.attn_v.weight                     | BF16   | [4096, 4096]
layers.19.attention.wo.weight                    -> blk.19.attn_output.weight                | BF16   | [4096, 4096]
layers.19.feed_forward.w1.weight                 -> blk.19.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.19.feed_forward.w2.weight                 -> blk.19.ffn_down.weight                   | BF16   | [4096, 11008]
layers.19.feed_forward.w3.weight                 -> blk.19.ffn_up.weight                     | BF16   | [11008, 4096]
layers.19.attention_norm.weight                  -> blk.19.attn_norm.weight                  | BF16   | [4096]
layers.19.ffn_norm.weight                        -> blk.19.ffn_norm.weight                   | BF16   | [4096]
layers.20.attention.wq.weight                    -> blk.20.attn_q.weight                     | BF16   | [4096, 4096]
layers.20.attention.wk.weight                    -> blk.20.attn_k.weight                     | BF16   | [4096, 4096]
layers.20.attention.wv.weight                    -> blk.20.attn_v.weight                     | BF16   | [4096, 4096]
layers.20.attention.wo.weight                    -> blk.20.attn_output.weight                | BF16   | [4096, 4096]
layers.20.feed_forward.w1.weight                 -> blk.20.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.20.feed_forward.w2.weight                 -> blk.20.ffn_down.weight                   | BF16   | [4096, 11008]
layers.20.feed_forward.w3.weight                 -> blk.20.ffn_up.weight                     | BF16   | [11008, 4096]
layers.20.attention_norm.weight                  -> blk.20.attn_norm.weight                  | BF16   | [4096]
layers.20.ffn_norm.weight                        -> blk.20.ffn_norm.weight                   | BF16   | [4096]
layers.21.attention.wq.weight                    -> blk.21.attn_q.weight                     | BF16   | [4096, 4096]
layers.21.attention.wk.weight                    -> blk.21.attn_k.weight                     | BF16   | [4096, 4096]
layers.21.attention.wv.weight                    -> blk.21.attn_v.weight                     | BF16   | [4096, 4096]
layers.21.attention.wo.weight                    -> blk.21.attn_output.weight                | BF16   | [4096, 4096]
layers.21.feed_forward.w1.weight                 -> blk.21.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.21.feed_forward.w2.weight                 -> blk.21.ffn_down.weight                   | BF16   | [4096, 11008]
layers.21.feed_forward.w3.weight                 -> blk.21.ffn_up.weight                     | BF16   | [11008, 4096]
layers.21.attention_norm.weight                  -> blk.21.attn_norm.weight                  | BF16   | [4096]
layers.21.ffn_norm.weight                        -> blk.21.ffn_norm.weight                   | BF16   | [4096]
layers.22.attention.wq.weight                    -> blk.22.attn_q.weight                     | BF16   | [4096, 4096]
layers.22.attention.wk.weight                    -> blk.22.attn_k.weight                     | BF16   | [4096, 4096]
layers.22.attention.wv.weight                    -> blk.22.attn_v.weight                     | BF16   | [4096, 4096]
layers.22.attention.wo.weight                    -> blk.22.attn_output.weight                | BF16   | [4096, 4096]
layers.22.feed_forward.w1.weight                 -> blk.22.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.22.feed_forward.w2.weight                 -> blk.22.ffn_down.weight                   | BF16   | [4096, 11008]
layers.22.feed_forward.w3.weight                 -> blk.22.ffn_up.weight                     | BF16   | [11008, 4096]
layers.22.attention_norm.weight                  -> blk.22.attn_norm.weight                  | BF16   | [4096]
layers.22.ffn_norm.weight                        -> blk.22.ffn_norm.weight                   | BF16   | [4096]
layers.23.attention.wq.weight                    -> blk.23.attn_q.weight                     | BF16   | [4096, 4096]
layers.23.attention.wk.weight                    -> blk.23.attn_k.weight                     | BF16   | [4096, 4096]
layers.23.attention.wv.weight                    -> blk.23.attn_v.weight                     | BF16   | [4096, 4096]
layers.23.attention.wo.weight                    -> blk.23.attn_output.weight                | BF16   | [4096, 4096]
layers.23.feed_forward.w1.weight                 -> blk.23.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.23.feed_forward.w2.weight                 -> blk.23.ffn_down.weight                   | BF16   | [4096, 11008]
layers.23.feed_forward.w3.weight                 -> blk.23.ffn_up.weight                     | BF16   | [11008, 4096]
layers.23.attention_norm.weight                  -> blk.23.attn_norm.weight                  | BF16   | [4096]
layers.23.ffn_norm.weight                        -> blk.23.ffn_norm.weight                   | BF16   | [4096]
layers.24.attention.wq.weight                    -> blk.24.attn_q.weight                     | BF16   | [4096, 4096]
layers.24.attention.wk.weight                    -> blk.24.attn_k.weight                     | BF16   | [4096, 4096]
layers.24.attention.wv.weight                    -> blk.24.attn_v.weight                     | BF16   | [4096, 4096]
layers.24.attention.wo.weight                    -> blk.24.attn_output.weight                | BF16   | [4096, 4096]
layers.24.feed_forward.w1.weight                 -> blk.24.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.24.feed_forward.w2.weight                 -> blk.24.ffn_down.weight                   | BF16   | [4096, 11008]
layers.24.feed_forward.w3.weight                 -> blk.24.ffn_up.weight                     | BF16   | [11008, 4096]
layers.24.attention_norm.weight                  -> blk.24.attn_norm.weight                  | BF16   | [4096]
layers.24.ffn_norm.weight                        -> blk.24.ffn_norm.weight                   | BF16   | [4096]
layers.25.attention.wq.weight                    -> blk.25.attn_q.weight                     | BF16   | [4096, 4096]
layers.25.attention.wk.weight                    -> blk.25.attn_k.weight                     | BF16   | [4096, 4096]
layers.25.attention.wv.weight                    -> blk.25.attn_v.weight                     | BF16   | [4096, 4096]
layers.25.attention.wo.weight                    -> blk.25.attn_output.weight                | BF16   | [4096, 4096]
layers.25.feed_forward.w1.weight                 -> blk.25.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.25.feed_forward.w2.weight                 -> blk.25.ffn_down.weight                   | BF16   | [4096, 11008]
layers.25.feed_forward.w3.weight                 -> blk.25.ffn_up.weight                     | BF16   | [11008, 4096]
layers.25.attention_norm.weight                  -> blk.25.attn_norm.weight                  | BF16   | [4096]
layers.25.ffn_norm.weight                        -> blk.25.ffn_norm.weight                   | BF16   | [4096]
layers.26.attention.wq.weight                    -> blk.26.attn_q.weight                     | BF16   | [4096, 4096]
layers.26.attention.wk.weight                    -> blk.26.attn_k.weight                     | BF16   | [4096, 4096]
layers.26.attention.wv.weight                    -> blk.26.attn_v.weight                     | BF16   | [4096, 4096]
layers.26.attention.wo.weight                    -> blk.26.attn_output.weight                | BF16   | [4096, 4096]
layers.26.feed_forward.w1.weight                 -> blk.26.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.26.feed_forward.w2.weight                 -> blk.26.ffn_down.weight                   | BF16   | [4096, 11008]
layers.26.feed_forward.w3.weight                 -> blk.26.ffn_up.weight                     | BF16   | [11008, 4096]
layers.26.attention_norm.weight                  -> blk.26.attn_norm.weight                  | BF16   | [4096]
layers.26.ffn_norm.weight                        -> blk.26.ffn_norm.weight                   | BF16   | [4096]
layers.27.attention.wq.weight                    -> blk.27.attn_q.weight                     | BF16   | [4096, 4096]
layers.27.attention.wk.weight                    -> blk.27.attn_k.weight                     | BF16   | [4096, 4096]
layers.27.attention.wv.weight                    -> blk.27.attn_v.weight                     | BF16   | [4096, 4096]
layers.27.attention.wo.weight                    -> blk.27.attn_output.weight                | BF16   | [4096, 4096]
layers.27.feed_forward.w1.weight                 -> blk.27.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.27.feed_forward.w2.weight                 -> blk.27.ffn_down.weight                   | BF16   | [4096, 11008]
layers.27.feed_forward.w3.weight                 -> blk.27.ffn_up.weight                     | BF16   | [11008, 4096]
layers.27.attention_norm.weight                  -> blk.27.attn_norm.weight                  | BF16   | [4096]
layers.27.ffn_norm.weight                        -> blk.27.ffn_norm.weight                   | BF16   | [4096]
layers.28.attention.wq.weight                    -> blk.28.attn_q.weight                     | BF16   | [4096, 4096]
layers.28.attention.wk.weight                    -> blk.28.attn_k.weight                     | BF16   | [4096, 4096]
layers.28.attention.wv.weight                    -> blk.28.attn_v.weight                     | BF16   | [4096, 4096]
layers.28.attention.wo.weight                    -> blk.28.attn_output.weight                | BF16   | [4096, 4096]
layers.28.feed_forward.w1.weight                 -> blk.28.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.28.feed_forward.w2.weight                 -> blk.28.ffn_down.weight                   | BF16   | [4096, 11008]
layers.28.feed_forward.w3.weight                 -> blk.28.ffn_up.weight                     | BF16   | [11008, 4096]
layers.28.attention_norm.weight                  -> blk.28.attn_norm.weight                  | BF16   | [4096]
layers.28.ffn_norm.weight                        -> blk.28.ffn_norm.weight                   | BF16   | [4096]
layers.29.attention.wq.weight                    -> blk.29.attn_q.weight                     | BF16   | [4096, 4096]
layers.29.attention.wk.weight                    -> blk.29.attn_k.weight                     | BF16   | [4096, 4096]
layers.29.attention.wv.weight                    -> blk.29.attn_v.weight                     | BF16   | [4096, 4096]
layers.29.attention.wo.weight                    -> blk.29.attn_output.weight                | BF16   | [4096, 4096]
layers.29.feed_forward.w1.weight                 -> blk.29.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.29.feed_forward.w2.weight                 -> blk.29.ffn_down.weight                   | BF16   | [4096, 11008]
layers.29.feed_forward.w3.weight                 -> blk.29.ffn_up.weight                     | BF16   | [11008, 4096]
layers.29.attention_norm.weight                  -> blk.29.attn_norm.weight                  | BF16   | [4096]
layers.29.ffn_norm.weight                        -> blk.29.ffn_norm.weight                   | BF16   | [4096]
layers.30.attention.wq.weight                    -> blk.30.attn_q.weight                     | BF16   | [4096, 4096]
layers.30.attention.wk.weight                    -> blk.30.attn_k.weight                     | BF16   | [4096, 4096]
layers.30.attention.wv.weight                    -> blk.30.attn_v.weight                     | BF16   | [4096, 4096]
layers.30.attention.wo.weight                    -> blk.30.attn_output.weight                | BF16   | [4096, 4096]
layers.30.feed_forward.w1.weight                 -> blk.30.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.30.feed_forward.w2.weight                 -> blk.30.ffn_down.weight                   | BF16   | [4096, 11008]
layers.30.feed_forward.w3.weight                 -> blk.30.ffn_up.weight                     | BF16   | [11008, 4096]
layers.30.attention_norm.weight                  -> blk.30.attn_norm.weight                  | BF16   | [4096]
layers.30.ffn_norm.weight                        -> blk.30.ffn_norm.weight                   | BF16   | [4096]
layers.31.attention.wq.weight                    -> blk.31.attn_q.weight                     | BF16   | [4096, 4096]
layers.31.attention.wk.weight                    -> blk.31.attn_k.weight                     | BF16   | [4096, 4096]
layers.31.attention.wv.weight                    -> blk.31.attn_v.weight                     | BF16   | [4096, 4096]
layers.31.attention.wo.weight                    -> blk.31.attn_output.weight                | BF16   | [4096, 4096]
layers.31.feed_forward.w1.weight                 -> blk.31.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.31.feed_forward.w2.weight                 -> blk.31.ffn_down.weight                   | BF16   | [4096, 11008]
layers.31.feed_forward.w3.weight                 -> blk.31.ffn_up.weight                     | BF16   | [11008, 4096]
layers.31.attention_norm.weight                  -> blk.31.attn_norm.weight                  | BF16   | [4096]
layers.31.ffn_norm.weight                        -> blk.31.ffn_norm.weight                   | BF16   | [4096]
skipping tensor rope_freqs
Writing models/Llama-7b-Chinese/ggml-model-f16.gguf, format 1
Ignoring added_tokens.json since model matches vocab size without it.
gguf: This GGUF file is for Little Endian only
gguf: Setting special token type bos to 1
gguf: Setting special token type eos to 2
gguf: Setting special token type pad to 0
gguf: Setting add_bos_token to True
gguf: Setting add_eos_token to False
[  1/291] Writing tensor token_embd.weight                      | size  32000 x   4096  | type F16  | T+   2
[  2/291] Writing tensor output_norm.weight                     | size   4096           | type F32  | T+   2
[  3/291] Writing tensor output.weight                          | size  32000 x   4096  | type F16  | T+   2
[  4/291] Writing tensor blk.0.attn_q.weight                    | size   4096 x   4096  | type F16  | T+   3
[  5/291] Writing tensor blk.0.attn_k.weight                    | size   4096 x   4096  | type F16  | T+   3
[  6/291] Writing tensor blk.0.attn_v.weight                    | size   4096 x   4096  | type F16  | T+   3
[  7/291] Writing tensor blk.0.attn_output.weight               | size   4096 x   4096  | type F16  | T+   3
[  8/291] Writing tensor blk.0.ffn_gate.weight                  | size  11008 x   4096  | type F16  | T+   3
[  9/291] Writing tensor blk.0.ffn_down.weight                  | size   4096 x  11008  | type F16  | T+   3
[ 10/291] Writing tensor blk.0.ffn_up.weight                    | size  11008 x   4096  | type F16  | T+   3
[ 11/291] Writing tensor blk.0.attn_norm.weight                 | size   4096           | type F32  | T+   3
[ 12/291] Writing tensor blk.0.ffn_norm.weight                  | size   4096           | type F32  | T+   3
[ 13/291] Writing tensor blk.1.attn_q.weight                    | size   4096 x   4096  | type F16  | T+   3
[ 14/291] Writing tensor blk.1.attn_k.weight                    | size   4096 x   4096  | type F16  | T+   3
[ 15/291] Writing tensor blk.1.attn_v.weight                    | size   4096 x   4096  | type F16  | T+   3
[ 16/291] Writing tensor blk.1.attn_output.weight               | size   4096 x   4096  | type F16  | T+   3
[ 17/291] Writing tensor blk.1.ffn_gate.weight                  | size  11008 x   4096  | type F16  | T+   3
[ 18/291] Writing tensor blk.1.ffn_down.weight                  | size   4096 x  11008  | type F16  | T+   3
[ 19/291] Writing tensor blk.1.ffn_up.weight                    | size  11008 x   4096  | type F16  | T+   3
[ 20/291] Writing tensor blk.1.attn_norm.weight                 | size   4096           | type F32  | T+   3
[ 21/291] Writing tensor blk.1.ffn_norm.weight                  | size   4096           | type F32  | T+   3
[ 22/291] Writing tensor blk.2.attn_q.weight                    | size   4096 x   4096  | type F16  | T+   3
[ 23/291] Writing tensor blk.2.attn_k.weight                    | size   4096 x   4096  | type F16  | T+   3
[ 24/291] Writing tensor blk.2.attn_v.weight                    | size   4096 x   4096  | type F16  | T+   3
[ 25/291] Writing tensor blk.2.attn_output.weight               | size   4096 x   4096  | type F16  | T+   4
[ 26/291] Writing tensor blk.2.ffn_gate.weight                  | size  11008 x   4096  | type F16  | T+   4
[ 27/291] Writing tensor blk.2.ffn_down.weight                  | size   4096 x  11008  | type F16  | T+   4
[ 28/291] Writing tensor blk.2.ffn_up.weight                    | size  11008 x   4096  | type F16  | T+   4
[ 29/291] Writing tensor blk.2.attn_norm.weight                 | size   4096           | type F32  | T+   4
[ 30/291] Writing tensor blk.2.ffn_norm.weight                  | size   4096           | type F32  | T+   4
[ 31/291] Writing tensor blk.3.attn_q.weight                    | size   4096 x   4096  | type F16  | T+   4
[ 32/291] Writing tensor blk.3.attn_k.weight                    | size   4096 x   4096  | type F16  | T+   4
[ 33/291] Writing tensor blk.3.attn_v.weight                    | size   4096 x   4096  | type F16  | T+   5
[ 34/291] Writing tensor blk.3.attn_output.weight               | size   4096 x   4096  | type F16  | T+   5
[ 35/291] Writing tensor blk.3.ffn_gate.weight                  | size  11008 x   4096  | type F16  | T+   5
[ 36/291] Writing tensor blk.3.ffn_down.weight                  | size   4096 x  11008  | type F16  | T+   5
[ 37/291] Writing tensor blk.3.ffn_up.weight                    | size  11008 x   4096  | type F16  | T+   5
[ 38/291] Writing tensor blk.3.attn_norm.weight                 | size   4096           | type F32  | T+   5
[ 39/291] Writing tensor blk.3.ffn_norm.weight                  | size   4096           | type F32  | T+   5
[ 40/291] Writing tensor blk.4.attn_q.weight                    | size   4096 x   4096  | type F16  | T+   5
[ 41/291] Writing tensor blk.4.attn_k.weight                    | size   4096 x   4096  | type F16  | T+   6
[ 42/291] Writing tensor blk.4.attn_v.weight                    | size   4096 x   4096  | type F16  | T+   6
[ 43/291] Writing tensor blk.4.attn_output.weight               | size   4096 x   4096  | type F16  | T+   6
[ 44/291] Writing tensor blk.4.ffn_gate.weight                  | size  11008 x   4096  | type F16  | T+   6
[ 45/291] Writing tensor blk.4.ffn_down.weight                  | size   4096 x  11008  | type F16  | T+   6
[ 46/291] Writing tensor blk.4.ffn_up.weight                    | size  11008 x   4096  | type F16  | T+   6
[ 47/291] Writing tensor blk.4.attn_norm.weight                 | size   4096           | type F32  | T+   6
[ 48/291] Writing tensor blk.4.ffn_norm.weight                  | size   4096           | type F32  | T+   6
[ 49/291] Writing tensor blk.5.attn_q.weight                    | size   4096 x   4096  | type F16  | T+   6
[ 50/291] Writing tensor blk.5.attn_k.weight                    | size   4096 x   4096  | type F16  | T+   6
[ 51/291] Writing tensor blk.5.attn_v.weight                    | size   4096 x   4096  | type F16  | T+   6
[ 52/291] Writing tensor blk.5.attn_output.weight               | size   4096 x   4096  | type F16  | T+   7
[ 53/291] Writing tensor blk.5.ffn_gate.weight                  | size  11008 x   4096  | type F16  | T+   7
[ 54/291] Writing tensor blk.5.ffn_down.weight                  | size   4096 x  11008  | type F16  | T+   7
[ 55/291] Writing tensor blk.5.ffn_up.weight                    | size  11008 x   4096  | type F16  | T+   7
[ 56/291] Writing tensor blk.5.attn_norm.weight                 | size   4096           | type F32  | T+   7
[ 57/291] Writing tensor blk.5.ffn_norm.weight                  | size   4096           | type F32  | T+   7
[ 58/291] Writing tensor blk.6.attn_q.weight                    | size   4096 x   4096  | type F16  | T+   7
[ 59/291] Writing tensor blk.6.attn_k.weight                    | size   4096 x   4096  | type F16  | T+   7
[ 60/291] Writing tensor blk.6.attn_v.weight                    | size   4096 x   4096  | type F16  | T+   7
[ 61/291] Writing tensor blk.6.attn_output.weight               | size   4096 x   4096  | type F16  | T+   7
[ 62/291] Writing tensor blk.6.ffn_gate.weight                  | size  11008 x   4096  | type F16  | T+   7
[ 63/291] Writing tensor blk.6.ffn_down.weight                  | size   4096 x  11008  | type F16  | T+   8
[ 64/291] Writing tensor blk.6.ffn_up.weight                    | size  11008 x   4096  | type F16  | T+   8
[ 65/291] Writing tensor blk.6.attn_norm.weight                 | size   4096           | type F32  | T+   8
[ 66/291] Writing tensor blk.6.ffn_norm.weight                  | size   4096           | type F32  | T+   8
[ 67/291] Writing tensor blk.7.attn_q.weight                    | size   4096 x   4096  | type F16  | T+   8
[ 68/291] Writing tensor blk.7.attn_k.weight                    | size   4096 x   4096  | type F16  | T+   8
[ 69/291] Writing tensor blk.7.attn_v.weight                    | size   4096 x   4096  | type F16  | T+   8
[ 70/291] Writing tensor blk.7.attn_output.weight               | size   4096 x   4096  | type F16  | T+   8
[ 71/291] Writing tensor blk.7.ffn_gate.weight                  | size  11008 x   4096  | type F16  | T+   8
[ 72/291] Writing tensor blk.7.ffn_down.weight                  | size   4096 x  11008  | type F16  | T+   9
[ 73/291] Writing tensor blk.7.ffn_up.weight                    | size  11008 x   4096  | type F16  | T+   9
[ 74/291] Writing tensor blk.7.attn_norm.weight                 | size   4096           | type F32  | T+   9
[ 75/291] Writing tensor blk.7.ffn_norm.weight                  | size   4096           | type F32  | T+   9
[ 76/291] Writing tensor blk.8.attn_q.weight                    | size   4096 x   4096  | type F16  | T+   9
[ 77/291] Writing tensor blk.8.attn_k.weight                    | size   4096 x   4096  | type F16  | T+   9
[ 78/291] Writing tensor blk.8.attn_v.weight                    | size   4096 x   4096  | type F16  | T+   9
[ 79/291] Writing tensor blk.8.attn_output.weight               | size   4096 x   4096  | type F16  | T+   9
[ 80/291] Writing tensor blk.8.ffn_gate.weight                  | size  11008 x   4096  | type F16  | T+   9
[ 81/291] Writing tensor blk.8.ffn_down.weight                  | size   4096 x  11008  | type F16  | T+   9
[ 82/291] Writing tensor blk.8.ffn_up.weight                    | size  11008 x   4096  | type F16  | T+  10
[ 83/291] Writing tensor blk.8.attn_norm.weight                 | size   4096           | type F32  | T+  10
[ 84/291] Writing tensor blk.8.ffn_norm.weight                  | size   4096           | type F32  | T+  10
[ 85/291] Writing tensor blk.9.attn_q.weight                    | size   4096 x   4096  | type F16  | T+  10
[ 86/291] Writing tensor blk.9.attn_k.weight                    | size   4096 x   4096  | type F16  | T+  10
[ 87/291] Writing tensor blk.9.attn_v.weight                    | size   4096 x   4096  | type F16  | T+  10
[ 88/291] Writing tensor blk.9.attn_output.weight               | size   4096 x   4096  | type F16  | T+  10
[ 89/291] Writing tensor blk.9.ffn_gate.weight                  | size  11008 x   4096  | type F16  | T+  10
[ 90/291] Writing tensor blk.9.ffn_down.weight                  | size   4096 x  11008  | type F16  | T+  10
[ 91/291] Writing tensor blk.9.ffn_up.weight                    | size  11008 x   4096  | type F16  | T+  10
[ 92/291] Writing tensor blk.9.attn_norm.weight                 | size   4096           | type F32  | T+  10
[ 93/291] Writing tensor blk.9.ffn_norm.weight                  | size   4096           | type F32  | T+  10
[ 94/291] Writing tensor blk.10.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  10
[ 95/291] Writing tensor blk.10.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  10
[ 96/291] Writing tensor blk.10.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  10
[ 97/291] Writing tensor blk.10.attn_output.weight              | size   4096 x   4096  | type F16  | T+  10
[ 98/291] Writing tensor blk.10.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  10
[ 99/291] Writing tensor blk.10.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  11
[100/291] Writing tensor blk.10.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  11
[101/291] Writing tensor blk.10.attn_norm.weight                | size   4096           | type F32  | T+  11
[102/291] Writing tensor blk.10.ffn_norm.weight                 | size   4096           | type F32  | T+  11
[103/291] Writing tensor blk.11.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  11
[104/291] Writing tensor blk.11.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  11
[105/291] Writing tensor blk.11.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  11
[106/291] Writing tensor blk.11.attn_output.weight              | size   4096 x   4096  | type F16  | T+  11
[107/291] Writing tensor blk.11.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  11
[108/291] Writing tensor blk.11.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  12
[109/291] Writing tensor blk.11.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  12
[110/291] Writing tensor blk.11.attn_norm.weight                | size   4096           | type F32  | T+  12
[111/291] Writing tensor blk.11.ffn_norm.weight                 | size   4096           | type F32  | T+  12
[112/291] Writing tensor blk.12.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  12
[113/291] Writing tensor blk.12.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  12
[114/291] Writing tensor blk.12.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  12
[115/291] Writing tensor blk.12.attn_output.weight              | size   4096 x   4096  | type F16  | T+  12
[116/291] Writing tensor blk.12.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  12
[117/291] Writing tensor blk.12.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  12
[118/291] Writing tensor blk.12.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  13
[119/291] Writing tensor blk.12.attn_norm.weight                | size   4096           | type F32  | T+  13
[120/291] Writing tensor blk.12.ffn_norm.weight                 | size   4096           | type F32  | T+  13
[121/291] Writing tensor blk.13.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  13
[122/291] Writing tensor blk.13.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  13
[123/291] Writing tensor blk.13.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  13
[124/291] Writing tensor blk.13.attn_output.weight              | size   4096 x   4096  | type F16  | T+  13
[125/291] Writing tensor blk.13.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  13
[126/291] Writing tensor blk.13.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  13
[127/291] Writing tensor blk.13.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  13
[128/291] Writing tensor blk.13.attn_norm.weight                | size   4096           | type F32  | T+  13
[129/291] Writing tensor blk.13.ffn_norm.weight                 | size   4096           | type F32  | T+  13
[130/291] Writing tensor blk.14.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  13
[131/291] Writing tensor blk.14.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  13
[132/291] Writing tensor blk.14.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  13
[133/291] Writing tensor blk.14.attn_output.weight              | size   4096 x   4096  | type F16  | T+  13
[134/291] Writing tensor blk.14.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  13
[135/291] Writing tensor blk.14.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  13
[136/291] Writing tensor blk.14.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  14
[137/291] Writing tensor blk.14.attn_norm.weight                | size   4096           | type F32  | T+  14
[138/291] Writing tensor blk.14.ffn_norm.weight                 | size   4096           | type F32  | T+  14
[139/291] Writing tensor blk.15.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  14
[140/291] Writing tensor blk.15.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  14
[141/291] Writing tensor blk.15.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  14
[142/291] Writing tensor blk.15.attn_output.weight              | size   4096 x   4096  | type F16  | T+  14
[143/291] Writing tensor blk.15.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  14
[144/291] Writing tensor blk.15.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  14
[145/291] Writing tensor blk.15.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  14
[146/291] Writing tensor blk.15.attn_norm.weight                | size   4096           | type F32  | T+  14
[147/291] Writing tensor blk.15.ffn_norm.weight                 | size   4096           | type F32  | T+  14
[148/291] Writing tensor blk.16.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  14
[149/291] Writing tensor blk.16.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  14
[150/291] Writing tensor blk.16.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  14
[151/291] Writing tensor blk.16.attn_output.weight              | size   4096 x   4096  | type F16  | T+  14
[152/291] Writing tensor blk.16.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  14
[153/291] Writing tensor blk.16.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  14
[154/291] Writing tensor blk.16.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  15
[155/291] Writing tensor blk.16.attn_norm.weight                | size   4096           | type F32  | T+  15
[156/291] Writing tensor blk.16.ffn_norm.weight                 | size   4096           | type F32  | T+  15
[157/291] Writing tensor blk.17.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  15
[158/291] Writing tensor blk.17.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  15
[159/291] Writing tensor blk.17.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  15
[160/291] Writing tensor blk.17.attn_output.weight              | size   4096 x   4096  | type F16  | T+  15
[161/291] Writing tensor blk.17.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  15
[162/291] Writing tensor blk.17.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  15
[163/291] Writing tensor blk.17.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  15
[164/291] Writing tensor blk.17.attn_norm.weight                | size   4096           | type F32  | T+  15
[165/291] Writing tensor blk.17.ffn_norm.weight                 | size   4096           | type F32  | T+  15
[166/291] Writing tensor blk.18.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  15
[167/291] Writing tensor blk.18.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  15
[168/291] Writing tensor blk.18.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  15
[169/291] Writing tensor blk.18.attn_output.weight              | size   4096 x   4096  | type F16  | T+  15
[170/291] Writing tensor blk.18.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  15
[171/291] Writing tensor blk.18.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  16
[172/291] Writing tensor blk.18.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  16
[173/291] Writing tensor blk.18.attn_norm.weight                | size   4096           | type F32  | T+  16
[174/291] Writing tensor blk.18.ffn_norm.weight                 | size   4096           | type F32  | T+  16
[175/291] Writing tensor blk.19.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  16
[176/291] Writing tensor blk.19.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  16
[177/291] Writing tensor blk.19.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  16
[178/291] Writing tensor blk.19.attn_output.weight              | size   4096 x   4096  | type F16  | T+  16
[179/291] Writing tensor blk.19.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  16
[180/291] Writing tensor blk.19.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  16
[181/291] Writing tensor blk.19.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  16
[182/291] Writing tensor blk.19.attn_norm.weight                | size   4096           | type F32  | T+  16
[183/291] Writing tensor blk.19.ffn_norm.weight                 | size   4096           | type F32  | T+  16
[184/291] Writing tensor blk.20.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  16
[185/291] Writing tensor blk.20.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  16
[186/291] Writing tensor blk.20.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  16
[187/291] Writing tensor blk.20.attn_output.weight              | size   4096 x   4096  | type F16  | T+  16
[188/291] Writing tensor blk.20.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  16
[189/291] Writing tensor blk.20.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  17
[190/291] Writing tensor blk.20.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  17
[191/291] Writing tensor blk.20.attn_norm.weight                | size   4096           | type F32  | T+  17
[192/291] Writing tensor blk.20.ffn_norm.weight                 | size   4096           | type F32  | T+  17
[193/291] Writing tensor blk.21.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  17
[194/291] Writing tensor blk.21.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  17
[195/291] Writing tensor blk.21.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  17
[196/291] Writing tensor blk.21.attn_output.weight              | size   4096 x   4096  | type F16  | T+  17
[197/291] Writing tensor blk.21.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  17
[198/291] Writing tensor blk.21.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  17
[199/291] Writing tensor blk.21.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  17
[200/291] Writing tensor blk.21.attn_norm.weight                | size   4096           | type F32  | T+  17
[201/291] Writing tensor blk.21.ffn_norm.weight                 | size   4096           | type F32  | T+  17
[202/291] Writing tensor blk.22.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  17
[203/291] Writing tensor blk.22.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  17
[204/291] Writing tensor blk.22.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  17
[205/291] Writing tensor blk.22.attn_output.weight              | size   4096 x   4096  | type F16  | T+  17
[206/291] Writing tensor blk.22.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  17
[207/291] Writing tensor blk.22.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  17
[208/291] Writing tensor blk.22.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  18
[209/291] Writing tensor blk.22.attn_norm.weight                | size   4096           | type F32  | T+  18
[210/291] Writing tensor blk.22.ffn_norm.weight                 | size   4096           | type F32  | T+  18
[211/291] Writing tensor blk.23.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  18
[212/291] Writing tensor blk.23.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  18
[213/291] Writing tensor blk.23.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  18
[214/291] Writing tensor blk.23.attn_output.weight              | size   4096 x   4096  | type F16  | T+  18
[215/291] Writing tensor blk.23.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  18
[216/291] Writing tensor blk.23.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  18
[217/291] Writing tensor blk.23.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  18
[218/291] Writing tensor blk.23.attn_norm.weight                | size   4096           | type F32  | T+  18
[219/291] Writing tensor blk.23.ffn_norm.weight                 | size   4096           | type F32  | T+  18
[220/291] Writing tensor blk.24.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  18
[221/291] Writing tensor blk.24.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  18
[222/291] Writing tensor blk.24.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  18
[223/291] Writing tensor blk.24.attn_output.weight              | size   4096 x   4096  | type F16  | T+  18
[224/291] Writing tensor blk.24.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  18
[225/291] Writing tensor blk.24.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  18
[226/291] Writing tensor blk.24.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  18
[227/291] Writing tensor blk.24.attn_norm.weight                | size   4096           | type F32  | T+  18
[228/291] Writing tensor blk.24.ffn_norm.weight                 | size   4096           | type F32  | T+  18
[229/291] Writing tensor blk.25.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  18
[230/291] Writing tensor blk.25.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  18
[231/291] Writing tensor blk.25.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  18
[232/291] Writing tensor blk.25.attn_output.weight              | size   4096 x   4096  | type F16  | T+  18
[233/291] Writing tensor blk.25.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  19
[234/291] Writing tensor blk.25.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  19
[235/291] Writing tensor blk.25.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  19
[236/291] Writing tensor blk.25.attn_norm.weight                | size   4096           | type F32  | T+  19
[237/291] Writing tensor blk.25.ffn_norm.weight                 | size   4096           | type F32  | T+  19
[238/291] Writing tensor blk.26.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  19
[239/291] Writing tensor blk.26.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  19
[240/291] Writing tensor blk.26.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  19
[241/291] Writing tensor blk.26.attn_output.weight              | size   4096 x   4096  | type F16  | T+  19
[242/291] Writing tensor blk.26.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  19
[243/291] Writing tensor blk.26.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  19
[244/291] Writing tensor blk.26.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  19
[245/291] Writing tensor blk.26.attn_norm.weight                | size   4096           | type F32  | T+  19
[246/291] Writing tensor blk.26.ffn_norm.weight                 | size   4096           | type F32  | T+  19
[247/291] Writing tensor blk.27.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  19
[248/291] Writing tensor blk.27.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  19
[249/291] Writing tensor blk.27.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  19
[250/291] Writing tensor blk.27.attn_output.weight              | size   4096 x   4096  | type F16  | T+  19
[251/291] Writing tensor blk.27.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  19
[252/291] Writing tensor blk.27.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  20
[253/291] Writing tensor blk.27.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  20
[254/291] Writing tensor blk.27.attn_norm.weight                | size   4096           | type F32  | T+  20
[255/291] Writing tensor blk.27.ffn_norm.weight                 | size   4096           | type F32  | T+  20
[256/291] Writing tensor blk.28.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  20
[257/291] Writing tensor blk.28.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  20
[258/291] Writing tensor blk.28.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  20
[259/291] Writing tensor blk.28.attn_output.weight              | size   4096 x   4096  | type F16  | T+  20
[260/291] Writing tensor blk.28.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  20
[261/291] Writing tensor blk.28.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  20
[262/291] Writing tensor blk.28.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  20
[263/291] Writing tensor blk.28.attn_norm.weight                | size   4096           | type F32  | T+  20
[264/291] Writing tensor blk.28.ffn_norm.weight                 | size   4096           | type F32  | T+  20
[265/291] Writing tensor blk.29.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  20
[266/291] Writing tensor blk.29.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  20
[267/291] Writing tensor blk.29.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  20
[268/291] Writing tensor blk.29.attn_output.weight              | size   4096 x   4096  | type F16  | T+  20
[269/291] Writing tensor blk.29.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  20
[270/291] Writing tensor blk.29.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  20
[271/291] Writing tensor blk.29.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  21
[272/291] Writing tensor blk.29.attn_norm.weight                | size   4096           | type F32  | T+  21
[273/291] Writing tensor blk.29.ffn_norm.weight                 | size   4096           | type F32  | T+  21
[274/291] Writing tensor blk.30.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  21
[275/291] Writing tensor blk.30.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  21
[276/291] Writing tensor blk.30.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  21
[277/291] Writing tensor blk.30.attn_output.weight              | size   4096 x   4096  | type F16  | T+  21
[278/291] Writing tensor blk.30.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  21
[279/291] Writing tensor blk.30.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  21
[280/291] Writing tensor blk.30.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  21
[281/291] Writing tensor blk.30.attn_norm.weight                | size   4096           | type F32  | T+  21
[282/291] Writing tensor blk.30.ffn_norm.weight                 | size   4096           | type F32  | T+  21
[283/291] Writing tensor blk.31.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  21
[284/291] Writing tensor blk.31.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  21
[285/291] Writing tensor blk.31.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  21
[286/291] Writing tensor blk.31.attn_output.weight              | size   4096 x   4096  | type F16  | T+  21
[287/291] Writing tensor blk.31.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  21
[288/291] Writing tensor blk.31.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  21
[289/291] Writing tensor blk.31.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  21
[290/291] Writing tensor blk.31.attn_norm.weight                | size   4096           | type F32  | T+  21
[291/291] Writing tensor blk.31.ffn_norm.weight                 | size   4096           | type F32  | T+  21
Wrote models/Llama-7b-Chinese/ggml-model-f16.gguf
(Llama-7b-Chinese) :~/newmodels/llama.cpp$

量化操作


(Llama-7b-Chinese) :~/newmodels/llama.cpp$ ./quantize ./models/Llama-7b-Chinese/ggml-model-f16.gguf ./models/Llama-7b-Chinese/ggml-model-q4_0.gguf q4_0
ggml_init_cublas: GGML_CUDA_FORCE_MMQ:   no
ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes
ggml_init_cublas: found 1 CUDA devices:Device 0: NVIDIA GeForce RTX 3080 Ti Laptop GPU, compute capability 8.6, VMM: yes
main: build = 2038 (7013716)
main: built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
main: quantizing './models/Llama-7b-Chinese/ggml-model-f16.gguf' to './models/Llama-7b-Chinese/ggml-model-q4_0.gguf' as Q4_0
llama_model_loader: loaded meta data with 20 key-value pairs and 291 tensors from ./models/Llama-7b-Chinese/ggml-model-f16.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.name str              = models
llama_model_loader: - kv   2:                       llama.context_length u32              = 2048
llama_model_loader: - kv   3:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv   4:                          llama.block_count u32              = 32
llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 11008
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv   7:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32              = 32
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  10:                          general.file_type u32              = 1
llama_model_loader: - kv  11:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  12:                      tokenizer.ggml.tokens arr[str,32000]   = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv  13:                      tokenizer.ggml.scores arr[f32,32000]   = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv  14:                  tokenizer.ggml.token_type arr[i32,32000]   = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv  15:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  16:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  17:            tokenizer.ggml.padding_token_id u32              = 0
llama_model_loader: - kv  18:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  19:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type  f16:  226 tensors
llama_model_quantize_internal: meta size = 741120 bytes
[   1/ 291]                    token_embd.weight - [ 4096, 32000,     1,     1], type =    f16, quantizing to q4_0 .. size =   250.00 MiB ->    70.31 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[   2/ 291]                   output_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[   3/ 291]                        output.weight - [ 4096, 32000,     1,     1], type =    f16, quantizing to q6_K .. size =   250.00 MiB ->   102.54 MiB
[   4/ 291]                  blk.0.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.034 0.008 0.012 0.019 0.031 0.050 0.084 0.149 0.256 0.150 0.084 0.051 0.031 0.019 0.012 0.010
[   5/ 291]                  blk.0.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.034 0.008 0.013 0.021 0.033 0.054 0.089 0.150 0.226 0.151 0.089 0.054 0.033 0.021 0.013 0.011
[   6/ 291]                  blk.0.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.024 0.036 0.053 0.074 0.096 0.117 0.129 0.117 0.096 0.074 0.053 0.036 0.024 0.020
[   7/ 291]             blk.0.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.035 0.011 0.017 0.028 0.044 0.068 0.100 0.135 0.155 0.135 0.100 0.068 0.044 0.028 0.017 0.014
[   8/ 291]                blk.0.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[   9/ 291]                blk.0.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.038 0.025 0.021
[  10/ 291]                  blk.0.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.076 0.096 0.111 0.117 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[  11/ 291]               blk.0.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  12/ 291]                blk.0.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  13/ 291]                  blk.1.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.013 0.022 0.034 0.052 0.074 0.098 0.121 0.132 0.121 0.098 0.074 0.052 0.034 0.022 0.018
[  14/ 291]                  blk.1.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.013 0.022 0.034 0.051 0.074 0.099 0.121 0.132 0.121 0.099 0.074 0.051 0.034 0.022 0.018
[  15/ 291]                  blk.1.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.014 0.023 0.035 0.052 0.073 0.097 0.119 0.130 0.119 0.097 0.074 0.052 0.035 0.023 0.019
[  16/ 291]             blk.1.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.035 0.012 0.020 0.031 0.047 0.070 0.098 0.129 0.146 0.129 0.099 0.070 0.047 0.031 0.020 0.016
[  17/ 291]                blk.1.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[  18/ 291]                blk.1.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[  19/ 291]                  blk.1.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.076 0.096 0.112 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[  20/ 291]               blk.1.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  21/ 291]                blk.1.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  22/ 291]                  blk.2.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.024 0.038 0.055 0.076 0.096 0.114 0.122 0.114 0.097 0.076 0.055 0.038 0.024 0.020
[  23/ 291]                  blk.2.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.024 0.037 0.055 0.075 0.097 0.115 0.124 0.115 0.097 0.075 0.055 0.037 0.024 0.020
[  24/ 291]                  blk.2.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.096 0.112 0.120 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[  25/ 291]             blk.2.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[  26/ 291]                blk.2.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  27/ 291]                blk.2.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  28/ 291]                  blk.2.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  29/ 291]               blk.2.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  30/ 291]                blk.2.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  31/ 291]                  blk.3.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.096 0.113 0.120 0.113 0.097 0.076 0.056 0.038 0.025 0.020
[  32/ 291]                  blk.3.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.096 0.113 0.120 0.113 0.096 0.076 0.056 0.038 0.025 0.020
[  33/ 291]                  blk.3.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.096 0.112 0.119 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[  34/ 291]             blk.3.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.077 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.038 0.025 0.021
[  35/ 291]                blk.3.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[  36/ 291]                blk.3.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.097 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[  37/ 291]                  blk.3.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[  38/ 291]               blk.3.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  39/ 291]                blk.3.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  40/ 291]                  blk.4.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.096 0.112 0.119 0.112 0.096 0.076 0.056 0.038 0.025 0.021
[  41/ 291]                  blk.4.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.096 0.113 0.120 0.113 0.096 0.076 0.056 0.038 0.025 0.020
[  42/ 291]                  blk.4.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.076 0.096 0.112 0.119 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[  43/ 291]             blk.4.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  44/ 291]                blk.4.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  45/ 291]                blk.4.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[  46/ 291]                  blk.4.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  47/ 291]               blk.4.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  48/ 291]                blk.4.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  49/ 291]                  blk.5.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.097 0.112 0.119 0.112 0.097 0.076 0.056 0.038 0.025 0.021
[  50/ 291]                  blk.5.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.097 0.113 0.119 0.113 0.096 0.076 0.056 0.038 0.025 0.020
[  51/ 291]                  blk.5.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.076 0.096 0.112 0.119 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[  52/ 291]             blk.5.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.112 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[  53/ 291]                blk.5.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  54/ 291]                blk.5.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.097 0.111 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[  55/ 291]                  blk.5.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[  56/ 291]               blk.5.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  57/ 291]                blk.5.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  58/ 291]                  blk.6.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.097 0.112 0.118 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[  59/ 291]                  blk.6.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.097 0.112 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[  60/ 291]                  blk.6.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.076 0.096 0.112 0.119 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[  61/ 291]             blk.6.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.097 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  62/ 291]                blk.6.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  63/ 291]                blk.6.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[  64/ 291]                  blk.6.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  65/ 291]               blk.6.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  66/ 291]                blk.6.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  67/ 291]                  blk.7.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.118 0.112 0.097 0.076 0.056 0.039 0.025 0.021
[  68/ 291]                  blk.7.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[  69/ 291]                  blk.7.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.096 0.112 0.119 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[  70/ 291]             blk.7.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.111 0.117 0.111 0.097 0.077 0.056 0.039 0.025 0.021
[  71/ 291]                blk.7.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  72/ 291]                blk.7.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[  73/ 291]                  blk.7.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  74/ 291]               blk.7.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  75/ 291]                blk.7.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  76/ 291]                  blk.8.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.076 0.097 0.112 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[  77/ 291]                  blk.8.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[  78/ 291]                  blk.8.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.096 0.112 0.119 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[  79/ 291]             blk.8.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[  80/ 291]                blk.8.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  81/ 291]                blk.8.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[  82/ 291]                  blk.8.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  83/ 291]               blk.8.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  84/ 291]                blk.8.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  85/ 291]                  blk.9.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[  86/ 291]                  blk.9.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.076 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[  87/ 291]                  blk.9.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.076 0.096 0.112 0.119 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[  88/ 291]             blk.9.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  89/ 291]                blk.9.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  90/ 291]                blk.9.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[  91/ 291]                  blk.9.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  92/ 291]               blk.9.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  93/ 291]                blk.9.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  94/ 291]                 blk.10.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[  95/ 291]                 blk.10.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[  96/ 291]                 blk.10.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.076 0.096 0.112 0.119 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[  97/ 291]            blk.10.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.026 0.021
[  98/ 291]               blk.10.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[  99/ 291]               blk.10.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.077 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 100/ 291]                 blk.10.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 101/ 291]              blk.10.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 102/ 291]               blk.10.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 103/ 291]                 blk.11.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 104/ 291]                 blk.11.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 105/ 291]                 blk.11.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.096 0.112 0.119 0.112 0.096 0.076 0.056 0.038 0.025 0.021
[ 106/ 291]            blk.11.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 107/ 291]               blk.11.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 108/ 291]               blk.11.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 109/ 291]                 blk.11.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 110/ 291]              blk.11.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 111/ 291]               blk.11.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 112/ 291]                 blk.12.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.112 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 113/ 291]                 blk.12.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 114/ 291]                 blk.12.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.076 0.096 0.112 0.119 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[ 115/ 291]            blk.12.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 116/ 291]               blk.12.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 117/ 291]               blk.12.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.117 0.112 0.097 0.077 0.056 0.038 0.025 0.021
[ 118/ 291]                 blk.12.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 119/ 291]              blk.12.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 120/ 291]               blk.12.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 121/ 291]                 blk.13.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.076 0.097 0.112 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 122/ 291]                 blk.13.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 123/ 291]                 blk.13.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.076 0.096 0.112 0.118 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[ 124/ 291]            blk.13.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 125/ 291]               blk.13.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 126/ 291]               blk.13.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.077 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.038 0.025 0.021
[ 127/ 291]                 blk.13.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 128/ 291]              blk.13.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 129/ 291]               blk.13.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 130/ 291]                 blk.14.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 131/ 291]                 blk.14.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 132/ 291]                 blk.14.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.076 0.096 0.112 0.119 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[ 133/ 291]            blk.14.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 134/ 291]               blk.14.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 135/ 291]               blk.14.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.077 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 136/ 291]                 blk.14.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 137/ 291]              blk.14.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 138/ 291]               blk.14.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 139/ 291]                 blk.15.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.097 0.112 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 140/ 291]                 blk.15.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 141/ 291]                 blk.15.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.076 0.096 0.112 0.119 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[ 142/ 291]            blk.15.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 143/ 291]               blk.15.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 144/ 291]               blk.15.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.077 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.038 0.025 0.021
[ 145/ 291]                 blk.15.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 146/ 291]              blk.15.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 147/ 291]               blk.15.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 148/ 291]                 blk.16.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[ 149/ 291]                 blk.16.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 150/ 291]                 blk.16.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.076 0.096 0.112 0.118 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[ 151/ 291]            blk.16.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.026 0.021
[ 152/ 291]               blk.16.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 153/ 291]               blk.16.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 154/ 291]                 blk.16.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 155/ 291]              blk.16.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 156/ 291]               blk.16.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 157/ 291]                 blk.17.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 158/ 291]                 blk.17.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 159/ 291]                 blk.17.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.076 0.096 0.112 0.118 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[ 160/ 291]            blk.17.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 161/ 291]               blk.17.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 162/ 291]               blk.17.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.097 0.111 0.117 0.111 0.097 0.077 0.056 0.039 0.025 0.021
[ 163/ 291]                 blk.17.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 164/ 291]              blk.17.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 165/ 291]               blk.17.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 166/ 291]                 blk.18.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.097 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 167/ 291]                 blk.18.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 168/ 291]                 blk.18.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.111 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[ 169/ 291]            blk.18.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 170/ 291]               blk.18.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 171/ 291]               blk.18.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.097 0.111 0.117 0.111 0.097 0.077 0.056 0.039 0.025 0.021
[ 172/ 291]                 blk.18.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 173/ 291]              blk.18.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 174/ 291]               blk.18.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 175/ 291]                 blk.19.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.097 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 176/ 291]                 blk.19.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 177/ 291]                 blk.19.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.076 0.096 0.111 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[ 178/ 291]            blk.19.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 179/ 291]               blk.19.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 180/ 291]               blk.19.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 181/ 291]                 blk.19.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 182/ 291]              blk.19.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 183/ 291]               blk.19.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 184/ 291]                 blk.20.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.111 0.117 0.111 0.097 0.077 0.056 0.039 0.025 0.021
[ 185/ 291]                 blk.20.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 186/ 291]                 blk.20.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.076 0.096 0.112 0.118 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[ 187/ 291]            blk.20.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.097 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 188/ 291]               blk.20.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 189/ 291]               blk.20.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 190/ 291]                 blk.20.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 191/ 291]              blk.20.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 192/ 291]               blk.20.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 193/ 291]                 blk.21.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[ 194/ 291]                 blk.21.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 195/ 291]                 blk.21.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.118 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 196/ 291]            blk.21.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 197/ 291]               blk.21.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 198/ 291]               blk.21.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 199/ 291]                 blk.21.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 200/ 291]              blk.21.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 201/ 291]               blk.21.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 202/ 291]                 blk.22.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.097 0.112 0.118 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 203/ 291]                 blk.22.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.077 0.097 0.112 0.118 0.112 0.097 0.076 0.056 0.039 0.025 0.021
[ 204/ 291]                 blk.22.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.118 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 205/ 291]            blk.22.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 206/ 291]               blk.22.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 207/ 291]               blk.22.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 208/ 291]                 blk.22.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 209/ 291]              blk.22.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 210/ 291]               blk.22.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 211/ 291]                 blk.23.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.111 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[ 212/ 291]                 blk.23.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[ 213/ 291]                 blk.23.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.118 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 214/ 291]            blk.23.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.026 0.021
[ 215/ 291]               blk.23.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 216/ 291]               blk.23.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 217/ 291]                 blk.23.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 218/ 291]              blk.23.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 219/ 291]               blk.23.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 220/ 291]                 blk.24.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[ 221/ 291]                 blk.24.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.076 0.097 0.112 0.118 0.112 0.097 0.076 0.056 0.039 0.025 0.021
[ 222/ 291]                 blk.24.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.118 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 223/ 291]            blk.24.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.097 0.077 0.057 0.039 0.026 0.021
[ 224/ 291]               blk.24.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 225/ 291]               blk.24.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 226/ 291]                 blk.24.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 227/ 291]              blk.24.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 228/ 291]               blk.24.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 229/ 291]                 blk.25.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 230/ 291]                 blk.25.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 231/ 291]                 blk.25.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 232/ 291]            blk.25.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 233/ 291]               blk.25.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 234/ 291]               blk.25.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 235/ 291]                 blk.25.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 236/ 291]              blk.25.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 237/ 291]               blk.25.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 238/ 291]                 blk.26.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 239/ 291]                 blk.26.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.077 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 240/ 291]                 blk.26.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.118 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 241/ 291]            blk.26.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 242/ 291]               blk.26.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 243/ 291]               blk.26.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.097 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 244/ 291]                 blk.26.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 245/ 291]              blk.26.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 246/ 291]               blk.26.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 247/ 291]                 blk.27.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[ 248/ 291]                 blk.27.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.112 0.117 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 249/ 291]                 blk.27.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 250/ 291]            blk.27.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 251/ 291]               blk.27.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 252/ 291]               blk.27.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.097 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 253/ 291]                 blk.27.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 254/ 291]              blk.27.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 255/ 291]               blk.27.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 256/ 291]                 blk.28.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.076 0.096 0.111 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 257/ 291]                 blk.28.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 258/ 291]                 blk.28.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.118 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 259/ 291]            blk.28.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 260/ 291]               blk.28.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 261/ 291]               blk.28.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 262/ 291]                 blk.28.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 263/ 291]              blk.28.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 264/ 291]               blk.28.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 265/ 291]                 blk.29.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 266/ 291]                 blk.29.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 267/ 291]                 blk.29.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[ 268/ 291]            blk.29.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 269/ 291]               blk.29.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 270/ 291]               blk.29.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.038 0.025 0.021
[ 271/ 291]                 blk.29.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 272/ 291]              blk.29.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 273/ 291]               blk.29.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 274/ 291]                 blk.30.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.096 0.112 0.119 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[ 275/ 291]                 blk.30.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[ 276/ 291]                 blk.30.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.118 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 277/ 291]            blk.30.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 278/ 291]               blk.30.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 279/ 291]               blk.30.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.024 0.038 0.055 0.076 0.097 0.114 0.120 0.114 0.097 0.076 0.055 0.038 0.024 0.020
[ 280/ 291]                 blk.30.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 281/ 291]              blk.30.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 282/ 291]               blk.30.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 283/ 291]                 blk.31.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.097 0.112 0.119 0.112 0.097 0.077 0.056 0.038 0.025 0.021
[ 284/ 291]                 blk.31.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.097 0.112 0.118 0.112 0.097 0.076 0.056 0.038 0.025 0.021
[ 285/ 291]                 blk.31.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.097 0.112 0.119 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[ 286/ 291]            blk.31.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 287/ 291]               blk.31.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.097 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 288/ 291]               blk.31.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.023 0.036 0.054 0.075 0.098 0.116 0.124 0.116 0.098 0.075 0.054 0.036 0.023 0.019
[ 289/ 291]                 blk.31.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.097 0.112 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 290/ 291]              blk.31.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 291/ 291]               blk.31.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
llama_model_quantize_internal: model size  = 12853.02 MB
llama_model_quantize_internal: quant size  =  3647.87 MB
llama_model_quantize_internal: hist: 0.036 0.015 0.025 0.039 0.056 0.076 0.096 0.112 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021main: quantize time =  4430.95 ms
main:    total time =  4430.95 ms

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

执行命令(ggml-model-f16.gguf)

(Llama-7b-Chinese) :~/newmodels/llama.cpp$ ./main -m ./models/Llama-7b-Chinese/ggml-model-f16.gguf -n 512 --n-gpu-layers 100 --prompt "我给大家介绍一下中国"
Log start
main: build = 2038 (7013716)
main: built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
main: seed  = 1713953724
ggml_init_cublas: GGML_CUDA_FORCE_MMQ:   no
ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes
ggml_init_cublas: found 1 CUDA devices:Device 0: NVIDIA GeForce RTX 3080 Ti Laptop GPU, compute capability 8.6, VMM: yes
llama_model_loader: loaded meta data with 20 key-value pairs and 291 tensors from ./models/Llama-7b-Chinese/ggml-model-f16.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.name str              = models
llama_model_loader: - kv   2:                       llama.context_length u32              = 2048
llama_model_loader: - kv   3:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv   4:                          llama.block_count u32              = 32
llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 11008
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv   7:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32              = 32
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  10:                          general.file_type u32              = 1
llama_model_loader: - kv  11:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  12:                      tokenizer.ggml.tokens arr[str,32000]   = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv  13:                      tokenizer.ggml.scores arr[f32,32000]   = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv  14:                  tokenizer.ggml.token_type arr[i32,32000]   = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv  15:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  16:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  17:            tokenizer.ggml.padding_token_id u32              = 0
llama_model_loader: - kv  18:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  19:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type  f16:  226 tensors
llm_load_vocab: special tokens definition check successful ( 259/32000 ).
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 32000
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: n_ctx_train      = 2048
llm_load_print_meta: n_embd           = 4096
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 32
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 1
llm_load_print_meta: n_embd_k_gqa     = 4096
llm_load_print_meta: n_embd_v_gqa     = 4096
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff             = 11008
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx  = 2048
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: model type       = 7B
llm_load_print_meta: model ftype      = F16
llm_load_print_meta: model params     = 6.74 B
llm_load_print_meta: model size       = 12.55 GiB (16.00 BPW)
llm_load_print_meta: general.name     = models
llm_load_print_meta: BOS token        = 1 '<s>'
llm_load_print_meta: EOS token        = 2 '</s>'
llm_load_print_meta: UNK token        = 0 '<unk>'
llm_load_print_meta: PAD token        = 0 '<unk>'
llm_load_print_meta: LF token         = 13 '<0x0A>'
llm_load_tensors: ggml ctx size =    0.22 MiB
llm_load_tensors: offloading 32 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 33/33 layers to GPU
llm_load_tensors:        CPU buffer size =   250.00 MiB
llm_load_tensors:      CUDA0 buffer size = 12603.02 MiB
...................................................................................................
llama_new_context_with_model: n_ctx      = 512
llama_new_context_with_model: freq_base  = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init:      CUDA0 KV buffer size =   256.00 MiB
llama_new_context_with_model: KV self size  =  256.00 MiB, K (f16):  128.00 MiB, V (f16):  128.00 MiB
llama_new_context_with_model:  CUDA_Host input buffer size   =     9.01 MiB
llama_new_context_with_model:      CUDA0 compute buffer size =    77.55 MiB
llama_new_context_with_model:  CUDA_Host compute buffer size =     8.80 MiB
llama_new_context_with_model: graph splits (measure): 3system_info: n_threads = 10 / 20 | AVX = 1 | AVX_VNNI = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 |
sampling:repeat_last_n = 64, repeat_penalty = 1.100, frequency_penalty = 0.000, presence_penalty = 0.000top_k = 40, tfs_z = 1.000, top_p = 0.950, min_p = 0.050, typical_p = 1.000, temp = 0.800mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampling order:
CFG -> Penalties -> top_k -> tfs_z -> typical_p -> top_p -> min_p -> temp
generate: n_ctx = 512, n_batch = 512, n_predict = 512, n_keep = 0我给大家介绍一下中国的奢侈品,让大家更加了解中国的文化吧。- 静电洗头器(一种高科技尽管相对较新的设备)- 自动牌纸机(手抓是最古老的方式)- 梦译术士(即将变成一种科技,但目前还有很多人在这上市风险高)- 纸牌(现在的童子军也不是只用石头了,因为我们并不是满洲里的一个文化,所以学习方式和思想都不同)- 钢琴(中国人最喜欢弹箱子,所以我们在家中经常会有这种东西,当然如果你去中国见过老人仍是使用打铃招待的时候,那不可能是钢琴)- 牛皮(一些高档的餐馆会给客人赠送牛皮来进行卫生保健,或者说我们现在还是喜欢看假面貌而不是真面目)- 手表(这里要特意注明:中国人喜欢装饰自己的手上的东西,所以我们绝对不会只买一只手表)- 美甲、化妆品、肤脓(中国古代人的时候拿木头去除蛀牙或者切开颊口来休息,如果你在北京一旁看到了老人们都是这样的)- 手机、电视(中国有些地
llama_print_timings:        load time =    2104.31 ms
llama_print_timings:      sample time =      88.61 ms /   512 runs   (    0.17 ms per token,  5777.93 tokens per second)
llama_print_timings: prompt eval time =      44.33 ms /    14 tokens (    3.17 ms per token,   315.80 tokens per second)
llama_print_timings:        eval time =   22674.35 ms /   511 runs   (   44.37 ms per token,    22.54 tokens per second)
llama_print_timings:       total time =   22960.52 ms /   525 tokens
Log end
(Llama-7b-Chinese) :~/newmodels/llama.cpp$

nvidia-smi命令实时查看指定GPU使用情况


watch -n 1 nvidia-smi  # 1代表每隔1秒刷新一次GPU使用情况NVIDIA-SMI 550.76.01   #GRID版本
Driver Version: 552.22  #驱动版本
CUDA Version: 12.4   #CUDA最高支持的版本
GPU:本机中的GPU编号,从0开始,本机只有一块GPU
Fan:风扇转速(0%-100%),N/A表示没有风扇
Name:GPU名字/类型,NVIDIA GeForce RTX 3080TI
Temp:GPU温度(GPU温度过高会导致GPU频率下降) 63C
Perf:性能状态,从P0(最大性能)到P12(最小性能),显示P0,最大性能
Pwr:Usager/Cap:GPU功耗,Usage表示用了多少,Cap表示总共多少 ,  79W /   80W
Persistence-M:持续模式状态,持续模式耗能大,为On
Bus-Id:GPU总线  00000000:01:00.0 
Disp.A:Display Active,表示GPU是否初始化 Off
Memory-Usage:显存使用率    13140MiB /  16384MiB,表示已接近占满
Volatile GPU-UTil:GPU使用率,92%
Uncorr. ECC:是否开启错误检查和纠错技术,0/DISABLED,1/ENABLED,为N/A
Compute M:计算模式,0/DEFAULT,1/EXCLUSIVE_PROCESS,2/PROHIBITED,为Default
Processes:显示每个进程占用的显存使用率、进程号、占用的哪个GPU,/python3.10
GPU Memory Usage   #该进程占用的显存。
Every 1.0s: nvidia-smi                                                                                       Wed Apr 24 20:14:20 2024
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.76.01              Driver Version: 552.22         CUDA Version: 12.4     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 3080 ...    On  |   00000000:01:00.0 Off |                  N/A |
| N/A   63C    P3             79W /   80W |   13140MiB /  16384MiB |     92%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------++-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|    0   N/A  N/A    140468      C   /main                                       N/A      |
+-----------------------------------------------------------------------------------------+

执行命令(ggml-model-q4_0.gguf)

(Llama-7b-Chinese) :~/newmodels/llama.cpp$ ./main -m ./models/Llama-7b-Chinese/ggml-model-q4_0.gguf -n 512 --prompt "我给大家介绍一下中国"
Log start
main: build = 2038 (7013716)
main: built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
main: seed  = 1713953984
ggml_init_cublas: GGML_CUDA_FORCE_MMQ:   no
ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes
ggml_init_cublas: found 1 CUDA devices:Device 0: NVIDIA GeForce RTX 3080 Ti Laptop GPU, compute capability 8.6, VMM: yes
llama_model_loader: loaded meta data with 21 key-value pairs and 291 tensors from ./models/Llama-7b-Chinese/ggml-model-q4_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.name str              = models
llama_model_loader: - kv   2:                       llama.context_length u32              = 2048
llama_model_loader: - kv   3:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv   4:                          llama.block_count u32              = 32
llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 11008
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv   7:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32              = 32
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  10:                          general.file_type u32              = 2
llama_model_loader: - kv  11:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  12:                      tokenizer.ggml.tokens arr[str,32000]   = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv  13:                      tokenizer.ggml.scores arr[f32,32000]   = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv  14:                  tokenizer.ggml.token_type arr[i32,32000]   = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv  15:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  16:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  17:            tokenizer.ggml.padding_token_id u32              = 0
llama_model_loader: - kv  18:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  19:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  20:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type q4_0:  225 tensors
llama_model_loader: - type q6_K:    1 tensors
llm_load_vocab: special tokens definition check successful ( 259/32000 ).
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 32000
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: n_ctx_train      = 2048
llm_load_print_meta: n_embd           = 4096
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 32
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 1
llm_load_print_meta: n_embd_k_gqa     = 4096
llm_load_print_meta: n_embd_v_gqa     = 4096
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff             = 11008
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx  = 2048
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: model type       = 7B
llm_load_print_meta: model ftype      = Q4_0
llm_load_print_meta: model params     = 6.74 B
llm_load_print_meta: model size       = 3.56 GiB (4.54 BPW)
llm_load_print_meta: general.name     = models
llm_load_print_meta: BOS token        = 1 '<s>'
llm_load_print_meta: EOS token        = 2 '</s>'
llm_load_print_meta: UNK token        = 0 '<unk>'
llm_load_print_meta: PAD token        = 0 '<unk>'
llm_load_print_meta: LF token         = 13 '<0x0A>'
llm_load_tensors: ggml ctx size =    0.11 MiB
llm_load_tensors: offloading 0 repeating layers to GPU
llm_load_tensors: offloaded 0/33 layers to GPU
llm_load_tensors:        CPU buffer size =  3647.87 MiB
..................................................................................................
llama_new_context_with_model: n_ctx      = 512
llama_new_context_with_model: freq_base  = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init:  CUDA_Host KV buffer size =   256.00 MiB
llama_new_context_with_model: KV self size  =  256.00 MiB, K (f16):  128.00 MiB, V (f16):  128.00 MiB
llama_new_context_with_model:  CUDA_Host input buffer size   =     9.01 MiB
llama_new_context_with_model:  CUDA_Host compute buffer size =    77.55 MiB
llama_new_context_with_model: graph splits (measure): 1system_info: n_threads = 10 / 20 | AVX = 1 | AVX_VNNI = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 |
sampling:repeat_last_n = 64, repeat_penalty = 1.100, frequency_penalty = 0.000, presence_penalty = 0.000top_k = 40, tfs_z = 1.000, top_p = 0.950, min_p = 0.050, typical_p = 1.000, temp = 0.800mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampling order:
CFG -> Penalties -> top_k -> tfs_z -> typical_p -> top_p -> min_p -> temp
generate: n_ctx = 512, n_batch = 512, n_predict = 512, n_keep = 0我给大家介绍一下中国国内的许多电商平台,可是很多人都不知道什么时候会出现新的电商平台,因此为了方便大家使用,Hinweis:虽然这些电商平台大部分都是在中国开始推出,但它们还是可以到达全球的。### 1. 京东JD.com![](https://img2022.cnblogs.com/blog/576439/202208/202208_79a0cfbf-4dfb-4c2d-aa12-eecfcd6fd764.jpg)京东JD.com是中国的最大电商平台,在中国开始推出的时候就已经有着相当较高的市场份领,为了保持这一状态,京东JD.com也不断投入资金去吸引更多的用户进来,现在他们已经成功地将自己从电子商务平台发展到了中国第一大的全线物流服务商。
京东JD.com也有相当较高的国际客户份领,可是由于他们的官网还没有支持外语版本,所以只能通过代理人来进行投放,这样就会导致外国用户很难了进行交易。### 2. 微信小程序![](https://img2022.cnblogs.com/blog/576439/202208/202208_d1aafbc6-f6e3-41db-ba57-18cf1decdffb.jpg)微信小程序也是在中国最为人所知的一款
llama_print_timings:        load time =     359.18 ms
llama_print_timings:      sample time =     125.12 ms /   512 runs   (    0.24 ms per token,  4091.91 tokens per second)
llama_print_timings: prompt eval time =    1128.84 ms /    14 tokens (   80.63 ms per token,    12.40 tokens per second)
llama_print_timings:        eval time =   51984.61 ms /   511 runs   (  101.73 ms per token,     9.83 tokens per second)
llama_print_timings:       total time =   53440.98 ms /   525 tokens
Log end

nvidia-smi命令实时查看指定GPU使用情况


Every 1.0s: nvidia-smi                                                                                                  : Wed Apr 24 18:19:59 2024Wed Apr 24 18:19:59 2024
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.76.01              Driver Version: 552.22         CUDA Version: 12.4     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 3080 ...    On  |   00000000:01:00.0 Off |                  N/A |
| N/A   61C    P8             13W /   80W |     198MiB /  16384MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------++-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|    0   N/A  N/A    160829      C   /main                                       N/A      |
+-----------------------------------------------------------------------------------------+

(Llama-7b-Chinese) :~/newmodels/llama.cpp$ ./main -m ./models/Llama-7b-Chinese/ggml-model-q4_0.gguf -n 512 --n-gpu-layers 100 --prompt "我给 大家介绍一下中国"
Log start
main: build = 2038 (7013716)
main: built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
main: seed  = 1713954147
ggml_init_cublas: GGML_CUDA_FORCE_MMQ:   no
ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes
ggml_init_cublas: found 1 CUDA devices:Device 0: NVIDIA GeForce RTX 3080 Ti Laptop GPU, compute capability 8.6, VMM: yes
llama_model_loader: loaded meta data with 21 key-value pairs and 291 tensors from ./models/Llama-7b-Chinese/ggml-model-q4_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.name str              = models
llama_model_loader: - kv   2:                       llama.context_length u32              = 2048
llama_model_loader: - kv   3:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv   4:                          llama.block_count u32              = 32
llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 11008
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv   7:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32              = 32
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  10:                          general.file_type u32              = 2
llama_model_loader: - kv  11:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  12:                      tokenizer.ggml.tokens arr[str,32000]   = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv  13:                      tokenizer.ggml.scores arr[f32,32000]   = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv  14:                  tokenizer.ggml.token_type arr[i32,32000]   = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv  15:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  16:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  17:            tokenizer.ggml.padding_token_id u32              = 0
llama_model_loader: - kv  18:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  19:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  20:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type q4_0:  225 tensors
llama_model_loader: - type q6_K:    1 tensors
llm_load_vocab: special tokens definition check successful ( 259/32000 ).
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 32000
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: n_ctx_train      = 2048
llm_load_print_meta: n_embd           = 4096
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 32
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 1
llm_load_print_meta: n_embd_k_gqa     = 4096
llm_load_print_meta: n_embd_v_gqa     = 4096
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff             = 11008
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx  = 2048
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: model type       = 7B
llm_load_print_meta: model ftype      = Q4_0
llm_load_print_meta: model params     = 6.74 B
llm_load_print_meta: model size       = 3.56 GiB (4.54 BPW)
llm_load_print_meta: general.name     = models
llm_load_print_meta: BOS token        = 1 '<s>'
llm_load_print_meta: EOS token        = 2 '</s>'
llm_load_print_meta: UNK token        = 0 '<unk>'
llm_load_print_meta: PAD token        = 0 '<unk>'
llm_load_print_meta: LF token         = 13 '<0x0A>'
llm_load_tensors: ggml ctx size =    0.22 MiB
llm_load_tensors: offloading 32 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 33/33 layers to GPU
llm_load_tensors:        CPU buffer size =    70.31 MiB
llm_load_tensors:      CUDA0 buffer size =  3577.56 MiB
..................................................................................................
llama_new_context_with_model: n_ctx      = 512
llama_new_context_with_model: freq_base  = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init:      CUDA0 KV buffer size =   256.00 MiB
llama_new_context_with_model: KV self size  =  256.00 MiB, K (f16):  128.00 MiB, V (f16):  128.00 MiB
llama_new_context_with_model:  CUDA_Host input buffer size   =     9.01 MiB
llama_new_context_with_model:      CUDA0 compute buffer size =    77.55 MiB
llama_new_context_with_model:  CUDA_Host compute buffer size =     8.80 MiB
llama_new_context_with_model: graph splits (measure): 3system_info: n_threads = 10 / 20 | AVX = 1 | AVX_VNNI = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 |
sampling:repeat_last_n = 64, repeat_penalty = 1.100, frequency_penalty = 0.000, presence_penalty = 0.000top_k = 40, tfs_z = 1.000, top_p = 0.950, min_p = 0.050, typical_p = 1.000, temp = 0.800mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampling order:
CFG -> Penalties -> top_k -> tfs_z -> typical_p -> top_p -> min_p -> temp
generate: n_ctx = 512, n_batch = 512, n_predict = 512, n_keep = 0我给大家介绍一下中国的很多文化。 everybody knows about the chinese culture, but only a few people know about our traditional folk custom.Today i want to tell you about one of China's traditional folk custom and its significance.### 问题:
我今天要讲一个很多人都不知道的中国传统文化,该什么?这个文化是什么意思?Today i want to tell you about one of China's traditional folk custom and its significance.### 解题:
我们家族的很多年代以来,每逢某一月中有些天气特别质疑,家人都会举行一种活动,就是在桌子上放上大量的白发和胎光。我们称之为“寻骷髅”。这个儿童时代的我对这件事情并不了解,后来才知道这是一种传统文化,由此揭开了一层中国古老的神话故事幽静的面纱。在现代社会,人们如何在生产时间下保持职业操守?还有人如何在家庭裡保持教育作用和推动儿童成长?这是我想说的那个传统文化。### 解题:
我们家族的很多年代以来,每逢某一月中有些天气特别质疑,家人都会举行一种活动,就是在桌子上放上大量的白发和胎光。我们称之为“寻骷髅”。这个儿童时代的我对这件事情并不
llama_print_timings:        load time =     638.00 ms
llama_print_timings:      sample time =      88.82 ms /   512 runs   (    0.17 ms per token,  5764.60 tokens per second)
llama_print_timings: prompt eval time =      59.77 ms /    14 tokens (    4.27 ms per token,   234.23 tokens per second)
llama_print_timings:        eval time =    8798.01 ms /   511 runs   (   17.22 ms per token,    58.08 tokens per second)
llama_print_timings:       total time =    9093.05 ms /   525 tokens
Log end

nvidia-smi命令实时查看指定GPU使用情况


Wed Apr 24 18:21:54 2024
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.76.01              Driver Version: 552.22         CUDA Version: 12.4     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 3080 ...    On  |   00000000:01:00.0 Off |                  N/A |
| N/A   68C    P0             78W /   80W |    4114MiB /  16384MiB |     77%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------++-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|    0   N/A  N/A    166223      C   /main                                       N/A      |
+-----------------------------------------------------------------------------------------+

eval time = 8798.01 ms / 511 runs ( 17.22 ms per token, 58.08 tokens per second)
llama_print_timings: total time = 9093.05 ms / 525 tokens
Log end


nvidia-smi命令实时查看指定GPU使用情况

Wed Apr 24 18:21:54 2024
±----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.76.01 Driver Version: 552.22 CUDA Version: 12.4 |
|-----------------------------------------±-----------------------±---------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=++======|
| 0 NVIDIA GeForce RTX 3080 … On | 00000000:01:00.0 Off | N/A |
| N/A 68C P0 78W / 80W | 4114MiB / 16384MiB | 77% Default |
| | | N/A |
±----------------------------------------±-----------------------±---------------------+

±----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| 0 N/A N/A 166223 C /main N/A |
±----------------------------------------------------------------------------------------+


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/4432.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux下软硬链接和动静态库制作详解

目录 前言 软硬链接 概念 软链接的创建 硬链接的创建 软硬链接的本质区别 理解软链接 理解硬链接 小结 动静态库 概念 动静态库的制作 静态库的制作 动态库的制作 前言 本文涉及到inode和地址空间等相关概念&#xff0c;不知道的小伙伴可以先阅读以下两篇文章…

智慧校园建设指导

智慧校园是一个庞大的业务系统&#xff0c;他涉及到校园事务的各个方面&#xff0c;包括教务&#xff0c;考务&#xff0c;教工&#xff0c;学工&#xff0c;办公&#xff0c;科研等。因此&#xff0c;建设符合学校业务需求的智慧校园平台&#xff0c;不仅需要做到认真负责外&a…

C语言位运算详解(移位操作符、位操作符)

目录 一、整数在内存中的存储方式 二、移位操作符 1、左移操作符 2、右移操作符 a.逻辑右移 b.算数右移 ps、移位操作符使用警告 三、位操作符 用例代码&#xff1a; a.按位与&#xff08;&&#xff09; b.按位或&#xff08;|&#xff09; c.按位异或&#xf…

【笔试强训】Day4 --- Fibonacci数列 + 单词搜索 + 杨辉三角

文章目录 1. Fibonacci数列2. 单词搜索3. 杨辉三角 1. Fibonacci数列 【链接】&#xff1a;Fibonacci数列 解题思路&#xff1a;简单模拟题&#xff0c;要最少的步数就是找离N最近的Fibonacci数&#xff0c;即可能情况只有比他小的最大的那个Fibonacci数以及比他大的最小的那…

《软件设计师教程:计算机网络浅了解计算机之间相互运运作的模式》

​ 个人主页&#xff1a;李仙桎 &#x1f525; 个人专栏: 《软件设计师》 ⛺️生活的理想&#xff0c;就是为了理想的生活! ​ ⛺️前言&#xff1a;各位铁汁们好啊&#xff01;&#xff01;&#xff01;&#xff0c;今天开始继续学习中级软件设计师考试相关的内容&#xff0…

Java高阶私房菜:JVM垃圾回收机制及算法原理探究

目录 垃圾回收机制 什么是垃圾回收机制 JVM的自动垃圾回收机制 垃圾回收机制的关键知识点 初步了解判断方法-引用计数法 GCRoot和可达性分析算法 什么是可达性分析算法 什么是GC Root 对象回收的关键知识点 标记对象可回收就一定会被回收吗&#xff1f; 可达性分析算…

【免费源码下载】完美运营版商城 虚拟商品全功能商城 全能商城小程序 智慧商城系统 全品类百货商城php+uniapp

简介 完美运营版商城/拼团/团购/秒杀/积分/砍价/实物商品/虚拟商品等全功能商城 干干净净 没有一丝多余收据 还没过手其他站 还没乱七八走的广告和后门 后台可以自由拖曳修改前端UI页面 还支持虚拟商品自动发货等功能 挺不错的一套源码 前端UNIAPP 后端PHP 一键部署版本&am…

52832 不使用micro_lib ,同时使用AC6编译器且使用printf问题

1. 因为我的工程用AC6是因为要跑自己的C 和 TensorFlow lite micro. 所以是C&#xff0c;C混合的工程&#xff0c;但是一直没法打印&#xff0c;所以写一个总结。 基本说明&#xff1a; micro_lib这种情况不要选&#xff0c;因为存在C文件 第一个坑&#xff1a; 第二个坑&…

windows 避免电脑强制息屏

许多打工人的电脑被公司设置了隔一段时间没有操作&#xff0c;就会自动息屏&#xff0c;如何避免这种事发生呢 方案一 自动操作鼠标的软件 如果能自由安装软件&#xff0c;可以下载自动移动鼠标的软件&#xff0c;设置鼠标每隔多长时间做一次什么操作&#xff0c;防止锁屏 方…

LIUNX:系统编程动态库加载(1)

目录 操作系统角度理解 如何加载 怎么管理库 编址 操作系统角度理解 如何加载 首先main想要运行&#xff0c;首先要为main创建task_struct和mm_struct&#xff0c;然后将main的代码和数据加载到内存&#xff0c;将main的代码通过页表映射到mm_struct的正文代码段&#xff0…

leetcode-比较版本号-88

题目要求 思路 1.因为字符串比较大小不方便&#xff0c;并且因为需要去掉前导的0&#xff0c;这个0我们并不知道有几个&#xff0c;将字符串转换为数字刚好能避免。 2.当判断到符号位的时候加加&#xff0c;跳过符号位。 3.判断数字大小&#xff0c;来决定版本号大小 4.核心代…

Unity | 优化专项-包体 | 字体

1. 字体包体占用 常用汉字字体文件大小通常在 10M~12M 左右&#xff0c;大概包含常见汉字 3.5w 个。我国汉字有大约将近十万个&#xff0c;全字库的大小对于游戏包体是灾难性的 在小游戏中&#xff0c;即使是常见汉字&#xff0c;大小也足以影响小游戏总包体&#xff0c;进而…

qmt教程2----订阅单股行情,提供源代码

链接 qmt教程2----订阅单股行情&#xff0c;提供源代码 (qq.com) qmt教程1---qmt安装&#xff0c;提供下载链接 今天我重新封装了全部qmt的内容&#xff0c;包括数据&#xff0c;交易 qmt交易 我本来打算全部上次git的&#xff0c;但是考虑到毕竟是实盘的内容&#xff0c;就放…

决策树学习笔记

一、衡量标准——熵 随机变量不确定性的度量 信息增益&#xff1a;表示特征X使得类Y的不确定性减少的程度。 二、数据集 14天的打球情况 特征&#xff1a;4种环境变化&#xff08;天气、温度等等&#xff09; 在上述数据种&#xff0c;14天中打球的天数为9天&#xff1b;不…

如何通过4G DTU实现现场仪表的分布式采集并发布到MQTT服务器

提供一份资料文档以一个具体的工程案例来讲解&#xff0c;如何通过4G DTU实现现场仪表的分布式采集并发布到MQTT服务器。采用的数据采集模块是有人物联的边缘采集4G DTU&#xff0c;采集多个多功能电表和远传水表的数据&#xff0c;通过MQTT通讯的型式传送给MQTT服务器&#xf…

【Vue3+Tres 三维开发】01-HelloWord

预览 什么是TRESJS 简单的说,就是基于THREEJS封装的能在vue3中使用的一个组件,可以像使用组件的方式去创建场景和模型。优势就是可以快速创建场景和要素的添加,并且能很明确知道创景中的要素构成和结构。 项目创建 npx create-vite@latest # 选择 vue typescript安装依赖…

【物联网】手把手完整实现STM32+ESP8266+MQTT+阿里云+APP应用——第1节-阿里云配置+MQTT.fx模拟与使用AT命令发布订阅消息

本节目标&#xff1a;通过MQTT.fx模拟连接或通过串口连接ESP8266发送AT命令&#xff0c;实现阿里云物联网平台发送数据同时接收数据&#xff0c;IOT studio界面显示数据。具体来说&#xff1a;使用ESP8266 ESP-01来连接网络&#xff0c;获取设备数据发送到阿里云物联网平台并显…

ElasticSearch批处理

在刚才的新增当中&#xff0c;我们是一次新增一条数据。那么如果你将来的数据库里有数千上万的数据&#xff0c;你一次新增一个&#xff0c;那得多麻烦。所以我们还要学习一下批量导入功能。 也就是说批量的把数据库的数据写入索引库。那这里的需求是&#xff0c;首先利用mybat…

哈密顿函数和正则方程

9-2 哈密顿函数和正则方程_哔哩哔哩_bilibili 拉格朗日函数是广义坐标和广义速度的函数 哈密顿函数是广义坐标和广义动量的函数 拉格朗日函数经过勒让德变换得到哈密顿函数

【python技术】akshare爬取A股最新业绩预告保存进excel的简单示例

最近A股上市公司陆续在出年报和一季度报了&#xff0c; 心里寻思着要不用python把这些数据爬取下来分析下&#xff0c;说干就干。 数据来源网站东方财富&#xff1a;https://data.eastmoney.com/bbsj/ 我这个人比较懒&#xff0c;直接用akshare封装的方法来搞定 之前用aksha…