【机器学习】大模型训练的深入探讨——Fine-tuning技术阐述与Dify平台介绍

目录

引言

Fine-tuning技术的原理阐

预训练模型

迁移学习

模型初始化

模型微调

超参数调整

任务设计

数学模型公式

Dify平台介绍

Dify部署

创建AI

接入大模型api

选择知识库


个人主页链接:东洛的克莱斯韦克-CSDN博客

引言

Fine-tuning技术允许用户根据特定任务的需求对预训练好的大模型进行微调,从而提高模型在特定任务上的性能。相比从头开始训练模型,可以显著降低训练成本和时间。还可以快速适应新任务的数据分布和特征,使模型能够更好地适应新的应用场景

Dify平台提供了丰富的预训练模型和自定义模型,用户可以直接在平台上进行Fine-tuning,无需自行准备和训练模型。该平台提供了数据导入清洗标注等丰富的数据处理功能,用户可以方便地对数据进行预处理和后处理,为Fine-tuning提供高质量的数据支持,从而进一步降低了成本。通过在Dify平台上应用Fine-tuning技术,用户可以轻松地对模型进行调整和优化,从而显著提升模型在新任务上的准确率、召回率等性能指标。

Dify平台支持多种主流的机器学习和深度学习框架,如TensorFlowPyTorch等,方便用户进行开发和部署。平台提供了自动化部署工具,用户只需简单配置即可将模型部署到云端或本地服务器上,降低了部署的难度和时间成本。

Fine-tuning技术的原理阐

预训练模型

预训练模型是在大量无标注标注数据上预先训练的深度学习模型,如BERTGPT等。这些模型通过在大规模文本数据上进行无监督学习,已经学习到了丰富的语言特征、词汇、语法和语义知识。

迁移学习

Fine-tuning是迁移学习的一种具体应用。迁移学习的核心思想是利用在一个任务上学习到的知识来帮助解决另一个不同但相关的任务。在Fine-tuning中,我们将预训练模型的知识迁移到新的特定任务上。

模型初始化

在Fine-tuning过程中,我们首先使用预训练模型的参数作为新任务模型的初始参数。这样做的好处是,预训练模型已经学习到了通用的语言特征,这些特征在新任务中仍然是有用的

模型微调

接下来,我们在新的特定任务的数据集上继续训练模型,对模型的参数进行微调。这通常包括解冻预训练模型的一部分层(通常是高层),并使用新任务的数据和标签进行训练。通过反向传播梯度下降等优化算法,模型会根据新任务的要求对权重进行更新,从而适应新任务的特定特征。

超参数调整

在Fine-tuning过程中,超参数的调整至关重要。超参数如学习率、批次大小和训练轮次等需要根据特定任务和数据集进行调整,以确保模型在训练过程中的有效性和性能。

任务设计

任务设计是Fine-tuning的关键一步。它决定了模型如何从预训练阶段迁移到特定任务。任务设计需要考虑的因素包括输入输出的形式损失函数的选择模型结构的调整等。

例如,对于文本分类任务,可能需要修改预训练模型的输出层以适应新的类别数量;对于序列生成任务,可能需要调整模型的解码器部分。

数学模型公式

Fine-tuning在数学上可以被看作是一个优化问题。假设预训练模型是(f(\cdot;\theta)),其中(\theta)是模型的参数。我们的目标是找到一组参数(\theta^*),使得模型在新任务上的损失函数最小。这通常通过反向传播和梯度下降等优化算法来实现。

如下是基于深度学习框架以及预训练模型库。使用PyTorch和Transformers库进行Fine-tuning的简化代码示例,以文本分类任务为例来帮助大家理解。

import torch  
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler  
from transformers import BertTokenizer, BertForSequenceClassification, AdamW, get_linear_schedule_with_warmup  
from your_dataset_module import YourDataset  # 假设你有一个自定义的数据集类  # 加载预训练模型和分词器  
model_name = 'bert-base-uncased'  
tokenizer = BertTokenizer.from_pretrained(model_name)  
model = BertForSequenceClassification.from_pretrained(model_name, num_labels=2)  # 假设是二分类任务  # 准备数据集  
train_dataset = YourDataset(tokenizer, data_file='train.txt', label_list=['0', '1'], max_seq_length=128)  
train_sampler = RandomSampler(train_dataset)  
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=16)  # Fine-tuning设置  
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  
model.to(device)  # 优化器和调度器  
optimizer = AdamW(model.parameters(), lr=2e-5, eps=1e-8)  
epochs = 4  
total_steps = len(train_dataloader) * epochs  
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)  # 训练循环  
for epoch in range(1, epochs+1):  model.train()  for batch in train_dataloader:  b_input_ids = batch['input_ids'].to(device)  b_input_mask = batch['attention_mask'].to(device)  b_labels = batch['labels'].to(device)  optimizer.zero_grad()  outputs = model(b_input_ids, attention_mask=b_input_mask, labels=b_labels)  loss = outputs.loss  loss.backward()  optimizer.step()  scheduler.step()  # 可以在这里添加打印损失或其他监控代码  # 保存模型  
model_to_save = model.module if hasattr(model, 'module') else model  # 注意:对于DataParallel模型,使用model.module  
model_to_save.save_pretrained('./model_save/')  
tokenizer.save_pretrained('./model_save/')

Dify平台介绍

Dify旨在简化AI应用的创建、部署和管理过程,使开发者能够更快速、更轻松地构建和运营基于GPT等模型的AI应用。

核心功能包括可视化的Prompt编排、运营、数据集管理等,支持开发者通过简单的拖拽和配置,将不同的功能模块组合在一起,快速创建出满足需求的AI应用。

可视化Prompt编排:允许用户通过界面化编写prompt并调试,简化开发过程。

数据集管理:支持多种数据格式,如CSV文件和其他格式的数据,方便用户导入和使用数据。

后端即服务和LLMOps概念集成:涵盖了从数据预处理到模型训练、部署和持续优化的整个流程。

支持多种模型:兼容并支持接入多种大型语言模型,包括OpenAI的GPT系列、Anthropic的Claude系列等。

Dify不仅适用于专业开发者,也允许没有编程基础的用户快速开发和运营自己的AI chatbot应用

Dify部署

关于Dify部署的问题可参考 LDG_AGI 大佬的文章

主页链接:

LDG_AGI-CSDN博客

文章链接:

AI智能体研发之路-工程篇(二):Dify智能体开发平台一键部署_dify-sandbox-CSDN博客

创建AI

新手建议选择基础编排

接入大模型api

首推的就是deepseek,原因很简单——白菜价而且也很稳定

创建api的key

选择知识库

知识库扮演着至关重要的角色,它为用户提供了丰富的数据和信息资源,以支持各种AI应用的构建和运行它包含了各种领域的知识和信息,如文本、图片、音频等,这些数据被用于训练AI模型,为模型提供丰富的背景知识和上下文信息。

以《三国演义》txt文本为例,通过在Dify平台上上传该文本并对模型进行Fine-tuning,模型在回答三国相关问题时能够更加准确和专业

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/36598.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据分析-常用模型-RFM模型

一、RFM模型的底层逻辑 漏斗模型中,大部分业务都是按流程推进,可以做漏斗分析。但是,大家有没有想过一个问题: 如果没有转化过程记录,该怎么办?如果用户行为频率很高,有几十个漏斗&#xff0c…

[数据库]索引机制

目录 索引机制 索引的类型 索引使用 哪些适合添加索引 ​编辑 索引机制 当没有索引的时候, 如下示例,在找到id等于1的时候, 仍然会往下继续查找, 进行全表扫描, 因为它认为下面也有可能还会有1 加上索引之后进行二叉树查找, 找到1之后, 发现1的左边没有了, 右边也没有了就停…

【项目实战】Android Studio简单实现图书馆借阅管理系统

希望文章能给到你启发和灵感~ 点赞收藏关注 支持一下吧~ 阅读指南 序幕一、基础环境说明1.1 硬件环境1.2 软件环境 二、整体设计2.1 数据库逻辑处理:2.2 登录/注册模块2.3 功能界面初始化:2.4 图书管理模块2.5 图书租借服务2.6 读…

钡铼BL104智慧环保多个485采集转MQTT无线传输

PLC物联网关BL104是一款专为工业环境设计的先进协议转换网关,其集成了钡铼智能技术和环保多个485采集转MQTT无线传输功能,为工业控制系统提供了高效的数据采集、传输和管理解决方案。 技术规格与功能特点 PLC物联网关BL104采用钡铼智能技术&#xff0c…

一招教你用python代码给朋友写一个爱心代码

有人问我马上要跟女朋友一周年了,能不能用代码给他写一个爱心代码呢?那算你问对人了,来上才艺 可以使用Python的turtle模块来绘制一个爱心形状。下面是一个简单的示例代码,我将详细解释每一步: import turtle # 创建一…

回溯法基本思想-01背包、N皇后回溯法图解

基本思想: ​ 回溯法是一种系统地搜索问题解空间的算法,常用于解决组合优化和约束满足问题。其核心思想是利用深度优先搜索逐步构建可能的解,同时在搜索过程中进行剪枝操作,以排除那些无法满足问题约束或不能产生最优解的分支&am…

js修改scss变量

style.scss $color : var(--color,#ccc); // 默认值 #ccc .color{background: $color; } 定义了一个scss变量($color),用普通的css变量(--color)给他赋值,这里需要一个默认值,此时css变量(--co…

数据结构复习指南

数据结构复习指南 本文中列举了数据结构期末考试可能存在的考点 绪论 数据的基本单位 数据元素是数据的基本单位 数据项 数据项是组成数据的、有独立含义的、不可分割的最小单位。 数据对象 数据对象是性质相同的数据元素的集合,是数据的一个子集。 数据结…

如何借助ai(文心一言)获取tushare的数据

1. 准备工作 确保已安装python ,安装Tushare库 和文心一言的地址(文心一言): 注册Tushare账号并获取Token:在Tushare官方网站注册账号,并获取个人Token。如下 tushare地址:(点击即…

【高级篇】InnoDB引擎深入:核心机制与实战优化(十五)

引言 在探索了MySQL集群与分布式技术之后,我们进入了数据库引擎的核心地带——InnoDB。作为MySQL的默认存储引擎,InnoDB凭借其对事务的支持、行级锁定、高效的恢复机制以及复杂的内存管理,成为众多应用场景的首选。本章,我们将深入InnoDB的内部机制,透彻理解锁管理、事务…

NeRF从入门到放弃6:两种OpenCV去畸变模型

针孔相机和鱼眼相机的去畸变模型是不一样的。 针孔相机的畸变参数有12个,k1~k6是径向畸变参数,p1 p2是切向畸变,s1s4;而鱼眼相机是等距模型,畸变参数只有4个k1k4。 针孔相机 畸变分为径向畸变和切向畸变。 把相机平…

【高考志愿】集成电路科学与工程

目录 一、专业概述 二、课程设置 三、就业前景 四、适合人群 五、院校推荐 六、集成电路科学与工程专业排名 一、专业概述 集成电路科学与工程,这一新兴且引人注目的交叉学科,正在逐渐崭露头角。它集合了电子工程、计算机科学、材料科学等多个领域的…

【Cpolar】如何实现外部网络对内部网络服务的访问

希望文章能给到你启发和灵感~ 如果觉得文章对你有帮助的话,点赞 关注 收藏 支持一下博主吧~ 阅读指南 开篇说明一、基础环境说明1.1 硬件环境1.2 软件环境 二、什么是Cpolar?三、如何安装Cpolar?3.1 Mac系统安装 四、最后 开篇说…

ChatGPT之母:AI自动化将取代人类,创意性工作或将消失

目录 01 AI取代创意性工作的担忧 1.1 CTO说了啥 02 AI已开始大范围取代人类 01 AI取代创意性工作的担忧 几天前的采访中,OpenAI的CTO直言,AI可能会扼杀一些本来不应该存在的创意性工作。 近来一篇报道更是印证了这一观点。国外科技媒体的老板Miller用…

! Warning: `flutter` on your path resolves to

目录 项目场景: 问题描述 原因分析: 解决方案: 1. 检查并更新.bash_profile或.zshrc文件 2.添加Flutter路径到环境变量 3. 加载配置文件 4.验证Flutter路径 5.重新启动终端 项目场景: 今天重新安装了AndroidStudio,并配置…

北京市大兴区餐饮行业协会成立暨职业技能竞赛总结大会成功举办

2024年6月27日下午,北京市大兴区营商服务中心B1层报告厅迎来了北京市大兴区餐饮行业协会成立仪式暨2024年北京市大兴区餐饮行业职工职业技能竞赛总结大会。此次活动不仅标志着大兴区餐饮行业协会的正式成立,也对在2024年大兴区餐饮行业职工职业技能竞赛中…

创新实训(十三) 项目开发——实现用户终止对话功能

思路分析: 如何实现用户终止AI正在进行的回答? 分析实现思路如下: 首先是在用户点击发送后,切换终止对话,点击后大模型终止对话,停止sse,不再接收后端的消息。同时因为对话记录存入数据库是后…

2小时动手学习扩散模型(pytorch版)【入门版】【代码讲解】

2小时动手学习扩散模型(pytorch版) 课程地址 2小时动手学习扩散模型(pytorch版) 课程目标 给零基础同学快速了解扩散模型的核心模块,有个整体框架的理解。知道扩散模型的改进和设计的核心模块。 课程特色&#xf…

基于VMware的linux操作系统安装(附安装包)

目录 一、linux操作系统下载链接 二、开始导入镜像源 注:若是还没安装VMware请转到高效实现虚拟机(VMware)安装教程(附安装包)-CSDN博客 一、linux操作系统下载链接 1.官网链接下载 ubuntu:ubuntu官网…

港湾周评|胖东来为什么是胖东来?蜜雪冰城为什么差之千里?

《港湾商业观察》李镭 似乎每一次胖东来的热搜,都堪称为教科书般化不利为有利,变坏事为好事。 6月27日凌晨,“胖东来商贸集团”官方公众号发布《关于新乡胖东来餐饮商户“擀面皮加工场所卫生环境差”的调查报告》,对于帮助其发现…