手把手教你部署并使用国产开源大模型ChatGLM3-6B

前言

部署一个自己的大模型,没事的时候玩两下,这可能是很多技术同学想做但又迟迟没下手的事情,没下手的原因很可能是成本太高,近万元的RTX3090显卡,想想都肉疼,又或者官方的部署说明过于简单,安装的时候总是遇到各种奇奇怪怪的问题,难以解决。本文就来分享下我的安装部署经验,包括本地和租用云服务器的方式,以及如何通过API调用大模型开发自己的AI应用,希望能解决一些下不去手的问题。

ChatGLM3-6B

本次部署使用的的大模型是ChatGLM3-6B,这个大模型是清华智谱研发并开源的高性能中英双语对话语言模型,它凭借创新的GLM(Gated Linear Units with Memory)架构及庞大的60亿参数量,在对话理解与生成能力上表现卓越。

ChatGLM3-6B不仅能够处理复杂的跨语言对话场景,实现流畅的人机互动,还具备函数调用以及代码解释执行的能力。这意味着开发者可以通过API调用,让模型执行特定任务或编写、解析简单的代码片段,从而将应用拓展到更为广泛的开发和智能辅助领域。

ChatGLM3-6B还允许开发者对预训练模型进行定制化微调,让它在某个领域工作的更好,比如代码编写、电商文案编写等。另外开发者还能对模型进行量化,使用较低的数字精度来表示权重,这使得模型可以运行在消费级显卡甚至CPU上。

效果展示

先看两个比较正常的效果:

能正常调用天气工具,记得上下文,这里点个赞!

再画一个满满的爱心,画的也不错。

再看两个跑疯的效果:

我问你天气,你不好好回答就算了,还反过来问我有啥意义,太爱管闲事。

看来ChatGLM对正六边形的感知有误啊,确实它还不能识别这个图像。

虽然有时不那么如人意,不过整体用起来还是有很多可圈可点的地方,就是提示词要好好写一下,不能太凑合。

云环境部署

这里提供两种方法,一是直接使用我已经创建好的镜像,二是自己从基础镜像一步步安装。

使用现有镜像

创建容器实例时镜像选择“社区镜像”,输入 yinghuoai ,选择 ChatGLM3 的最新镜像。

容器实例开机成功后,点击对应实例的 JupyterLab 就能开始使用了。

这个镜像包含三个Notebook,方便我们启动WebUI服务器和API服务器,并进行相关的测试。我将在下文介绍具体的使用方法。

自己手动安装

创建容器实例时我们选择一个基础镜像 Miniconda -> conda3 -> Python 3.10(ubuntu22.04) -> Cuda11.8。

容器实例开机完毕后,点击对应实例的 JupyterLab 进入一个Web管理界面。

在“启动页”这里点击“终端”,进入一个命令窗口。

首先需要设置下网络,用以加速访问Github。这是AutoDL实例才能使用的,本地无效。

source /etc/network_turbo

然后需要把代码下载到本地,使用Git即可。

git clone https://github.com/THUDM/ChatGLM3
cd ChatGLM3

然后创建一个Python的虚拟环境,这样方便隔离不同项目对Python环境的不同要求。这里使用 source activate 激活虚拟环境,很多文章中是 conda activate,这和conda的版本有关系,AutoDL中的版本不支持 conda activate。

conda create -n chatglm3-6b python=3.10.8 
source activate chatglm3-6b

然后使用 uv 安装依赖的程序包。为什么用uv?因为requirements中很多包的版本要求都是 >=,直接使用pip的时候会安装最新的版本,最新的版本往往和开发者使用的版本不同,这会导致一些兼容问题,所以最好就是 == 的那个版本,这个版本能用,而且一般就是开发者使用的版本。

pip install uv
uv pip install --resolution=lowest-direct -r requirements.txt

然后我们还要下载大模型文件,这里从AutoDL的模型库中下载,速度比较快。下边的模型文件是别人分享出来的,我们使用AutoDL提供的一个下载工具进行下载。下载目标目录是/root/autodl-tmp,会自动在这个目录中创建一个名为 chatglm3-6b 的子目录,并保存这些文件。

pip install codewithgpu
cg down xxxiu/chatglm3-6b/config.json -t /root/autodl-tmp
cg down xxxiu/chatglm3-6b/configuration_chatglm.py -t /root/autodl-tmp
cg down xxxiu/chatglm3-6b/gitattributes -t /root/autodl-tmp
cg down xxxiu/chatglm3-6b/model.safetensors.index.json -t /root/autodl-tmp
cg down xxxiu/chatglm3-6b/MODEL_LICENSE -t /root/autodl-tmp
cg down xxxiu/chatglm3-6b/model-00001-of-00007.safetensors -t /root/autodl-tmp
cg down xxxiu/chatglm3-6b/model-00002-of-00007.safetensors -t /root/autodl-tmp
cg down xxxiu/chatglm3-6b/model-00003-of-00007.safetensors -t /root/autodl-tmp
cg down xxxiu/chatglm3-6b/model-00004-of-00007.safetensors -t /root/autodl-tmp
cg down xxxiu/chatglm3-6b/model-00005-of-00007.safetensors -t /root/autodl-tmp
cg down xxxiu/chatglm3-6b/model-00006-of-00007.safetensors -t /root/autodl-tmp
cg down xxxiu/chatglm3-6b/model-00007-of-00007.safetensors -t /root/autodl-tmp
cg down xxxiu/chatglm3-6b/modeling_chatglm.py -t /root/autodl-tmp
cg down xxxiu/chatglm3-6b/pytorch_model.bin.index.json -t /root/autodl-tmp
cg down xxxiu/chatglm3-6b/quantization.py -t /root/autodl-tmp
cg down xxxiu/chatglm3-6b/README.md -t /root/autodl-tmp
cg down xxxiu/chatglm3-6b/tokenization_chatglm.py -t /root/autodl-tmp
cg down xxxiu/chatglm3-6b/tokenizer.model -t /root/autodl-tmp
cg down xxxiu/chatglm3-6b/tokenizer_config.json -t /root/autodl-tmp

最后我们做一个简单的测试,找到这个文件:ChatGLM3/basic_demo/cli_demo.py,修改其中的模型路径为上边的下载路径:/root/autodl-tmp/chatglm3-6b

在终端执行命令:python basic_demo/cli_demo.py,然后我们就可以在终端与大模型进行交流了。

本地环境安装

注意需要13G显存以上的Nvidia显卡,否则跑不起来。这里以Windows系统为例。

这个安装文件比较大,下载时间取决于你的网速,下载成功后按照提示一步步安装就行了。

安装成功后,启动“Anaconda Navigator”,在其中点击“Environments”->“base(root)” ->“Open Terminal”,打开终端。

这是一个命令行工具,我们将主要在这里边通过执行命令安装ChatGLM3-6B。

这里我将程序放到了C盘下的ChatGLM3目录。

cd C:\
git clone https://github.com/THUDM/ChatGLM3
cd ChatGLM3

使用下边的命令创建一个Python的虚拟环境并激活,这样方便隔离不同项目对Python环境的不同要求。

conda create -n chatglm3-6b python=3.10.8 
conda activate chatglm3-6b

然后还需要把相关模型文件下载到本地,为了防止下载方式失效,这里提供多种方法:

(1)下载AutoDL用户分享的模型,执行下边的命令,它会下载到 C:\ChatGLM3\THUDM,速度还可以。

pip install requests
pip install codewithgpu
cg down xxxiu/chatglm3-6b/config.json -t C:\ChatGLM3\THUDM
cg down xxxiu/chatglm3-6b/configuration_chatglm.py -t C:\ChatGLM3\THUDM
cg down xxxiu/chatglm3-6b/gitattributes -t C:\ChatGLM3\THUDM
cg down xxxiu/chatglm3-6b/model.safetensors.index.json -t C:\ChatGLM3\THUDM
cg down xxxiu/chatglm3-6b/MODEL_LICENSE -t C:\ChatGLM3\THUDM
cg down xxxiu/chatglm3-6b/model-00001-of-00007.safetensors -t C:\ChatGLM3\THUDM
cg down xxxiu/chatglm3-6b/model-00002-of-00007.safetensors -t C:\ChatGLM3\THUDM
cg down xxxiu/chatglm3-6b/model-00003-of-00007.safetensors -t C:\ChatGLM3\THUDM
cg down xxxiu/chatglm3-6b/model-00004-of-00007.safetensors -t C:\ChatGLM3\THUDM
cg down xxxiu/chatglm3-6b/model-00005-of-00007.safetensors -t C:\ChatGLM3\THUDM
cg down xxxiu/chatglm3-6b/model-00006-of-00007.safetensors -t C:\ChatGLM3\THUDM
cg down xxxiu/chatglm3-6b/model-00007-of-00007.safetensors -t C:\ChatGLM3\THUDM
cg down xxxiu/chatglm3-6b/modeling_chatglm.py -t C:\ChatGLM3\THUDM
cg down xxxiu/chatglm3-6b/pytorch_model.bin.index.json -t C:\ChatGLM3\THUDM
cg down xxxiu/chatglm3-6b/quantization.py -t C:\ChatGLM3\THUDM
cg down xxxiu/chatglm3-6b/README.md -t C:\ChatGLM3\THUDM
cg down xxxiu/chatglm3-6b/tokenization_chatglm.py -t C:\ChatGLM3\THUDM
cg down xxxiu/chatglm3-6b/tokenizer.model -t C:\ChatGLM3\THUDM
cg down xxxiu/chatglm3-6b/tokenizer_config.json -t C:\ChatGLM3\THUDM

(2)从HuggingFace的镜像下载,地址是:[hf-mirror.com/THUDM/chatg…]

(3)给公众号“萤火架构”发消息 ChatGLM3 获取最新下载方式。

最后我们做一个简单的测试,执行命令:python basic_demo/cli_demo.py,然后我们就可以在终端与大模型进行交流了。

如果程序出现下边的错误:

RuntimeError: “addmm_impl_cpu_” not implemented for ‘Half’

首先确定你的电脑是安装了Nvida显卡的,然后使用下边的命令补充安装相关的pytorch-cuda包。

conda install pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=11.8 -c pytorch -c nvidia
pip install chardet

使用WebUI体验

ChatGLM提供了一个Web界面,用户可以直接在这个页面上聊天、使用插件,以及执行Python代码,就像使用大多数的大语言模型一样。额外的用户还可以配置一些参数,比如一次生成Token的数量、系统提示词、采样的随机性控制等。

启动WebUI服务

首先修改程序中的模型目录,在下载程序中找到文件 composite_demo/client.py,修改 MODEL_PATH 为你的模型存放地址。

然后进入 ChatGLM3-6B 程序的根目录(根据自己的部署来),激活Python虚拟环境:

cd /root/ChatGLM3
conda activate chatglm3-6b
# conda如果不行就使用 source activate chatglm3-6b

因为需要执行代码,我们还要安装 Jupyter 内核:

ipython kernel install --name chatglm3-6b --user

并修改文件 composite_demo/demo_ci.py 中的 IPYKERNEL 的值为设置的值。

最后启动API服务器:streamlit run composite_demo/main.py 可知这个WebUI使用的是streamlit框架。

如果是在个人电脑上安装的,点击这里的连接就可以在浏览器访问了。

如果是在AutoDL上的实例,还需要再折腾一下。因为这个WebUI使用了WebSocket,但是AutoDL开放的外网端口不支持WebSocket。此时可以通过SSH隧道的方式来打通本地与AutoDL实例的网络。

我们需要类似下边这样的一条指令:

sudo ssh -CNg -L 8501:127.0.0.1:8501 root@connect.westb.seetacloud.com -p 12357

其中的 connect.westb.seetacloud.com 和 10757 需要替换成你自己实例的,在实例列表中复制登录指令。

然后把它随便粘贴到一个地方,就可以得到所需的地址和端口号了:

在个人电脑的终端或者命令行工具执行上边写好的指令,首先需要统一添加主机(输入 yes),然后需要输入主机登录密码,还是从AutoDL的实例列表拷贝。

登录成功后,这个界面会挂起,不会输出任何内容。此时我们在浏览器地址栏输入 [http://127.0.0.1:8501]

使用WebUI

聊天就不用说了,我们看下工具或插件的使用。它会完整的展现出来插件的使用过程,用户询问问题,触发大模型调用插件,展现插件返回的内容,大模型整理插件返回的内容并输出给用户。中间的两个过程这里只是为了方便用户了解原理,其实可以在展现大模型返回值时将它们过滤掉。具体的可以修改这个文件中的第144行-198行:composite_demo/demo_tool.py 。

实例代码中提供了两个工具,一个是获取实时天气,另一个是生成随机数,用户还可以修改代码增加自己的工具插件,在 composite_demo/tool_registry.py 这个文件中。

只需要使用 @register_tool 装饰函数即可完成注册。对于工具声明,函数名称即为工具的名称,函数 docstring 即为工具的说明;对于工具的参数,使用 Annotated[typ: type, description: str, required: bool] 标注参数的类型、描述和是否必须。例如,get_weather 工具的注册如下:

@register_tool
def get_weather(city_name: Annotated[str, 'The name of the city to be queried', True],
) -> str:"""Get the weather for `city_name` in the following week"""...

再看看代码解释器的效果,模型会根据对任务完成情况的理解自动地连续执行多个代码块,直到任务完成。比如让它用Python画一个爱心。

如果代码执行有错误,模型会自动修正错误,然后继续生成,直到能够正常执行成功。这个能力其实是通过系统提示词和observation角色实现的。

在 composite_demo/demo_ci.py 中可以看到提示词:

当程序执行出错的时候,程序会通过observation角色把错误再发给ChatGLM进行分析,然后ChatGLM会修改代码,再重新输出到程序中,最后使用 Jupyter 内核执行代码。

使用API开发应用

使用大模型API,我们可以完全自定义自己的交互页面,增加很多有趣的功能,比如提供联网能力。

这里我们使用的是ChatGLM3-6B自带的一个API示例程序,这个程序中有一个参考OpenAI接口规范开发的API服务,我们可以直接使用OpenAI的客户端进行调用,这避免了很多学习成本,降低了使用难度。

启动API服务

首先修改程序中的模型目录,在下载程序中找到文件 openai_api_demo/api_server.py,修改 MODEL_PATH 为你的模型存放地址。

然后进入 ChatGLM3-6B 程序的根目录(根据自己的部署来),激活Python虚拟环境:

cd C:\ChatGLM3
conda activate chatglm3-6b
# conda如果不行就使用 source activate chatglm3-6b

最后启动API服务器:python openai_api_demo/api_server.py

看到 running on http://0.0.0.0 的提示信息就代表启动成功了。

注意这里的端口号,如果你是在AutoDL部署的程序,需要将端口号修改为6006,然后才能通过AutoDL提供的“自定义服务”在外网访问,端口号在openai_api_demo/api_server.py 文件的最末尾。

修改后重启API服务,然后在AutoDL的容器实例列表中点击“自定义服务”,即可获取外网访问地址。

调用API服务

这里还是以Python为例,首先使用pip安装OpenAI的SDK。

pip install --upgrade openai httpx[socks]

我准备了两个简单的应用示例,一个是简单的聊天程序,另一个是在大模型中使用插件的方法。

# 一个简单的聊天程序from openai import OpenAIclient = OpenAI(api_key='not-need-key',base_url="http://127.0.0.1:6006/v1")
stream = client.chat.completions.create(messages=[{"role": "system", "content": "你是一名数学老师,从事小学数学教育30年,精通设计各种数学考试题"},{"role": "user", "content": "请给我出10道一年级的计算题。"}],model='chatglm3-6b',max_tokens=1024,#temperature=0.1,top_p=0.3,#frequency_penalty=0.5,presence_penalty=0.2,seed=12345,#stop='30年',response_format={ "type": "json_object" },n=1,stream=True
)for chunk in stream:msg = chunk.choices[0].delta.contentif msg is not None:print(msg, end='')

下边是程序的执行结果,大模型理解的很正确,并生成了合理的输出。

再看大模型中使用插件的方法,这里让ChatGLM根据用户要求调用天气函数查询实时天气,注意ChatGLM3-6B调用函数的方法没有支持最新的OpenAI API规范,目前只实现了一半,能通过tools传入函数,但是响应消息中命中函数还是使用的 function_call,而不是最新的 tool_calls

from openai import OpenAI
import json
import requests
import time# 获取天气的方法
def get_city_weather(param):city = json.loads(param)["city"]r = requests.get(f"https://wttr.in/{city}?format=j1")data = r.json()["current_condition"]#print(json.dumps(data))temperature = data[0]['temp_C']humidity= data[0]['humidity']text = data[0]['weatherDesc'][0]["value"]return "当前天气:"+text+",温度:"+temperature+ "℃,湿度:"+humidity+"%"# 天气插件的定义
weather_tool = {"type": "function","function": {"name": "get_city_weather","description": "获取某个城市的天气","parameters": {"type": "object","properties": {"city": {"type": "string","description": "城市名称",},},"required": ["city"],},}
}# 创建OpenAI客户端,获取API Key请看文章最后
client = OpenAI(api_key='no-need-key', base_url="http://127.0.0.1:6006/v1")# 定义请求GPT的通用方法
def create_completion():return client.chat.completions.create(messages=messages,model='chatglm3-6b',stream=False,tool_choice="auto",tools=[weather_tool])# 我的三个问题
questions = ["请问上海天气怎么样?","请问广州天气怎么样?","成都呢?","北京呢?"]# 聊天上下文,初始为空
messages=[]print("---GLM天气插件演示--- ")# 遍历询问我的问题
for question in questions:  # 将问题添加到上下文中messages.append({"role": "user","content": question,})print("路人甲: ",question)# 请求GPT,并拿到响应response_message = create_completion().choices[0].message# 把响应添加到聊天上下文中messages.append(response_message)#print(response_message)# 根据插件命中情况,执行插件逻辑if response_message.function_call is not None:function_call = response_message.function_call# 追加插件生成的天气内容到聊天上下文weather_info = get_city_weather(function_call.arguments)#print(weather_info)messages.append({"role": "function","content": weather_info,"name": function_call.name})# 再次发起聊天second_chat_completion = create_completion()gpt_output = second_chat_completion.choices[0].message.content# 打印GPT合成的天气内容print("GLM: ",gpt_output)time.sleep(0.2)# 将GPT的回答也追加到上下文中messages.append({"role": "assistant","content": gpt_output,})else:print("GLM: ",response_message.content)

执行效果如下:


那么,我们该如何学习大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

一、大模型全套的学习路线

学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。

L1级别:AI大模型时代的华丽登场

L2级别:AI大模型API应用开发工程

L3级别:大模型应用架构进阶实践

L4级别:大模型微调与私有化部署

一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。

以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/26790.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

新渠道+1!TDengine Cloud 入驻 Azure Marketplace

近日,TDengine Cloud 正式入驻微软云 Marketplace,为全球更多用户带来全托管的时序数据处理服务。这一举措也丰富了 TDengine 的订阅渠道,为用户提供了极大的便捷性。现在,您可以通过微软云 Marketplace 轻松订阅并部署 TDengine …

电信网关配置管理系统 del_file.php 前台RCE漏洞复现

0x01 产品简介 中国电信集团有限公司(英文名称“China Telecom”、简称“中国电信”)成立于2000年9月,是中国特大型国有通信企业、上海世博会全球合作伙伴。电信网关配置管理系统是一个用于管理和配置电信网络中网关设备的软件系统。它可以帮助网络管理员实现对网关设备的远…

感受光子芯片中试线,如何点亮未来计算与通信的革命之路(2024青岛智能装备与通信技术展)

光子芯片中试线:点亮未来计算与通信的革命之路 在新一代信息技术的浪潮中,光子芯片以其低能耗、高速度的特点备受瞩目。首条光子芯片中试线的建立,标志着我国在光电子领域的重大突破,同时也为即将到来的量子计算时代奠定了坚实基…

PCL 任意二维图像转点云

目录 一、概述二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫。 一、概述 给定任意一张图片,通过代码操作将图片转成点云。图像中包含大量可用信息,其中必不可少的信息为像素坐标和像素值,将像…

大模型辅助编程助手:『小浣熊 Raccoon』 如何使用?

认识 Raccoon Raccoon (Raccoon is Another Code CO-pilOt Navigator) 是基于 AI 的代码助手,是商汤科技发布基于商汤自研大语言模型的智能编程助手,代码小浣熊 Raccoon 支持 Python、Java、JavaScript、C、Go、SQL 等30主流编程语言和 VS Code、Intell…

什么?项目经理也算经理?

今天偶然看到一个有意思的问题:“如何破解项目经理的无权、无利、有责的现状”? 乍看有点费解,细想还挺有意思,这不禁引发了我的思考,项目经理到底算不算经理? 从管理学的角度来看,根据亨利法约…

端口镜像配置举例

1.网络拓扑 2.需求:用户希望通过server对部门1和部门2收发的报文进行监控。 3.配置步骤方案一: #创建本地镜像组 sysSystem View: return to User View with CtrlZ.[H3C]mirroring-group 1 local #为本地镜像组配置源端口和目的端口 [H3C]mirroring-gr…

CV每日论文--2024.6.14

1、ICE-G: Image Conditional Editing of 3D Gaussian Splats 中文标题:ICE-G:3D 高斯斑点的图像条件编辑 简介:近年来,出现了许多技术来创建高质量的3D资产和场景。然而,当涉及到这些3D对象的编辑时,现有方法要么速度慢、要么牺牲质量,要么…

三极管的厄利效应(early effect)

詹姆斯M厄利(James M. Early)发现的现象,厄利效应(英语:Early effect),又译厄尔利效应,也称基区宽度调制效应,是指当双极性晶体管(BJT)的集电极-射极电压VCE改…

精彩回顾!安全智能体的前沿技术研究与实践

(关注“安全极客”,回复“智能体”下载第一期系列专题PPT!) 近日,安全极客和Wisemodel社区联合发起并主办了“AISecurity”系列第1期:大模型与网络空间安全前沿探索线下活动。在这次活动中,云起…

弹幕逆向signature、a_bogus

声明 本文章中所有内容仅供学习交流使用,不用于其他任何目的,抓包内容、敏感网址、数据接口等均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关! 本文章未经许可禁止转载&a…

【Linux文件篇】磁盘到用户空间:Linux文件系统架构全景

W...Y的主页 😊 代码仓库分享 💕 前言:我们前面的博客中一直提到的是被进程打开的文件,而系统中不仅仅只有被打开的文件还有很多没被打开的文件。如果没有被打开,那么文件是在哪里进行保存的呢?那我们又如何快速定位…

Unity 踩坑记录 用自定义类 创建的List不显示在 inspector面板

在 自定义类上面添加 【Serializable 】 扩展: 1:Serializable 序列化的是可序列化的类或结构。并且只能序列化非抽象非泛型的自定义的类 2:SerializeField是强制对私有字段序列化

Perl 语言入门学习

一、介绍 Perl 是一种高级的、动态的、解释型的通用编程语言,由Larry Wall于1987年开发。它是一种非常灵活和强大的语言,广泛用于文本处理、系统管理、网络编程、图形编程等领域。 Perl 语言的设计理念是“用一种简单的语法,去解决复杂的编…

LabVIEW水箱液位控制系统

介绍了如何使用LabVIEW软件和硬件工具开发水箱液位控制系统。系统集成了数据采集、实时控制和模拟仿真技术,展示了高精度和高可靠性的特点,适用于需要精细水位调节的工业应用。 项目背景 在制造和化工行业,液位控制是保证生产安全与效率的关…

Linux DNS域名解析

DNS系统的作用及类型 整个 Internet 大家庭中连接了数以亿计的服务器、个人主机,其中大部分的网站、邮件等服务器都使用了域名形式的地址,如www.google.com、mail.163.com 等。很显然这种地址形式要比使用 64.233.189.147、202.108.33.74的IP地址形式更…

【教程】从0开始搭建大语言模型:构造GPT模型

从0开始搭建大语言模型:构造GPT模型 从0开始搭建大语言模型:构造GPT模型GPT模型Layer NormalizationGELU激活函数Feed Forward网络增强shortcut连接构造Transformer Block构造GPT模型使用GPT模型生成文本 从0开始搭建大语言模型:构造GPT模型 …

2024-2025最新软考系统架构设计师的复习资料教材,解决如何快速高效通过该考试,试题的重点和难点在哪里?案例分析题和论文题的要点和踩坑点分析

目录 引言考试概述 考试结构考试内容 复习策略 制定复习计划学习资源 知识点详解 系统架构基础设计原则与模式系统分析与设计软件开发过程项目管理系统集成性能与优化安全性设计新兴技术 试题解析 选择题案例分析题论文题 重点与难点分析模拟试题与答案参考资料总结 引言 系…

QT基础-简介,安装(6.7.1编译)

目录 QT简介 一.QT编译 国内镜像网站 1. For windows a.下载:qt-everywhere-src-6.7.1.zip b.下载Cmake c.下载python d.查看readme.md e. x64 native Tools cd 到 源码目录 f.输入 g. 然后输入 ​编辑 h.最后输入 1.2. qt-creator 1.3. 配置编译 2. For Ubu…

驱动开发(三):驱动操作寄存器

驱动开发系列文章: 驱动开发(一):驱动代码的基本框架 驱动开发(二):创建字符设备驱动 驱动开发(三):驱动操作寄存器 ←本文 目录 驱动是如何操作…