常用的python库-安装与使用

常用的python库函数

  • yield关键字
  • openslide库
    • openslide库的安装-linux
    • openslide的使用
    • openslide对象的常用属性
  • cv2库
  • numpy库
  • ASAP库-multiresolutionimageinterface库
    • ASAP库的安装
    • ASAP库的使用
  • concurrent.futures.ThreadPoolExecutor
  • xml.etree.ElementTree库
  • skimage库
  • PIL.Image库 PIL.Image.Image
  • detectron2库
    • 数据增强
    • MaskFormerSemanticDatasetMapper类:
    • MetadataCatalog类常见属性
  • faiss库-聚类

yield关键字

yield关键字:定义生成器函数。
生成器函数:允许在迭代过程中逐步生成值,而不是一次性返回所有值。
yield语句会暂停函数的执行,并返回一个值给调用者。下一次调用生成器的__next()__方法,函数会从暂停的地方继续执行。
生成器函数:节省内存,按需求生成值,而不是一次性将所有值加载到内存中。

openslide库

openslide库的安装-linux

很多虚拟环境都需要额外装openslide库,所以记录一下过程:

cd /home/liusn/00apps
conda activate 环境名
pip install openslide_bin-4.0.0.5-py3-none-manylinux_2_27_x86_64.whl
pip install openslide-python==1.3.1

在这里插入图片描述

openslide的使用

  1. openslide库是一个读取和操作显微镜图像的python库,支持.svs,.vms和.tiff等格式。
  2. 支持图像金字塔格式:在不同的分辨率下访问图像数据。
  3. 可以从原始图像中提取特定区域,不需要加载整个图像。
  4. 能够访问图像的元数据,如放大倍数、图像尺寸等。
import openslide  
# 打开显微镜图像 
slide = openslide.OpenSlide(wsi_path)  # 获取特定金字塔层级的图像尺寸 
# level从0开始,0表示最高分辨率 
# w, h表示指定层级的图像宽度和高度 
w, h = slide.level_dimensions[level]  # 获取level层的下采样比例 
# 下采样比例: 特定层级的像素大小与最高分辨率像素大小的比例关系 
# 如果下采样比例为(2,2), 图像的宽和高都被缩小为原来的1/2 
factor = slide.level_downsamples[level]  
# 从显微镜图像中读取指定区域 
# location: tuple, 左上角坐标; level: 金字塔层级 
# size: (w, h), 要读取的区域大小; 返回一个PIL对象 
image = slide.read_region(location, level, size)

openslide对象的常用属性

  • self.level_downsamples[level]:获取level层的下采样比例,相对于最高分辨率而言。
  • self.level_dimension[level]:level层的图像尺寸。

cv2库

import cv2  # 在图像上绘制多边形 
# img: 要在其上绘制的图像; pts: 一个包含多边形顶点的ndarray; 
# color: 填充的颜色, (255)表示白色 
cv2.fillPoly(img, pts, color)  # 在图像上绘制文本 
# img: 要绘制文本的图像; text: 要绘制的文本字符串 
cv2.putText(img, text)

numpy库

import numpy as np  
# 找到数组中满足条件的元组索引 
# condition: bool数组, 返回所有为True的行, 列索引 
X_idx, Y_idx = np.where(condition)  # 根据条件condition进行数组的元素选择和替换 
# condition为True时, 返回value1, 否则返回value2 inst_map = np.where(condition, value1, value2)  
# 将数组按行的方向堆叠起来 
# tup: 一个列表/元组, 返回一个新数组(总行数, 列数) 
# 总行数 = 所有输入数组的行数之和 np.vstack(tup)  
selected_x[..., 0:1] # ...表示前面所有的维度

ASAP库-multiresolutionimageinterface库

处理金字塔类型的数据结构。处理多分辨率图像的python库,适合医学图像和显微镜图像的分析。支持不同分辨率的访问与操作。

ASAP库的安装

安装ASAP linux(ubuntu18.04-A6000):https://www.freesion.com/article/4489476959/
安装ASAP linux(ubuntu22.04-4x3090)的安装步骤:

  • 在ASAP官网下载最新版:ASAP 2.2,适配ubuntu2204。
    在这里插入图片描述

  • 安装ASAP的依赖包:用sudo apt-get install 命令。apt-get install是用于命令行操作的软件包管理工具,该命令是安装软件包。

  • 离线安装ASAP的安装包:dpkg -i ASAP-2.2-Ubuntu2204.deb ,手动安装本地的deb文件。

  • 看ASAP安装的位置:dpkg -L asap 。

  • 把ASAP放入PYTHONPATH,然后可以import了。

PYTHONPATH="/opt/ASAP/bin":"${PYTHONPATH}" 
export PYTHONPATH

ASAP库的使用

ASAP库是一个C++写的软件,所以不能读源码。少量的python调用文档见:https://academic.oup.com/gigascience/article/7/6/giy065/5026175

ASAP官网:https://github.com/computationalpathologygroup/ASAP/releases

通过python 访问tif数据:
在这里插入图片描述
将XML注释数据转换为tif图像,假设注释里的多边形坐标是基于图像最高分辨率级别的。
在这里插入图片描述
示例代码:

import multiresolutionimageinterface as mir  # 创建图像接口 
reader = mir.MultiResolutionImageReader()  # 打开和加载多分辨率图像文件 
mr_image = reader.open(path) # 获取level 6的图像尺寸 level=2 
w, h = mr_image.getLevelDimensions(level) 
ds = mr_image.getLevelDownsample(level) # 从level 6获取一个patch, patch左上角的坐标为(0,0), 返回的tile是一个numpy对象 
tile = image.getUCharPatch(0, 0, w, h, 6) # 读取一个 300 像素宽、200 像素高的图像块,从level=2 的 (568, 732) XY 坐标开始 
# ds是下采样倍数, 在level=2的坐标乘以ds, 得到level=0的坐标 
tile = image.getUCharPatch(int(568 * ds), int(732 * ds), 300, 200, level)  
# 存储和管理多分辨率图像相关的注释数据 
annotation_list = mir.AnnotationList() 
# 将注释数据转换以xml格式存储 
xml_repository = mir.XmlRepository(annotation_list) 
# 设置or更新xml文件的源路径 xml_repository.setSource(path) 
# 从xml文件加载数据 xml_repository.load() 
# 将注释数据转换为二值掩码 
annotation_mask = mir.AnnotationToMask() 
# 将提供的注释annotation_list转换为二值掩码 
annotation_mask.convert(annotation_list, output_path,image_dimensions, image_spacing)

concurrent.futures.ThreadPoolExecutor

管理线程池并高效地执行多线程任务,可以加快I/O密集型任务的处理速度。通过提交任务来执行并发操作。

from concurrent.futures import ThreadPoolExecutor  # 创建对象, max_workers指定最大线程数, 如果没有指定, python根据系统的线程数进行调整 
executor = ThreadPoolExecutor(max_workers=3)  # 使用map()提交多个任务 
executor.map(task, range(5))  # 关闭线程池 
executor.shutdown(wait=True)

xml.etree.ElementTree库

解析和创建xml文档,用于读取、修改和生成xml。

import xml.etree.ElementTree as ET  # 从指定文件中读取xml数据, 并解析为一个树结构 ElementTree对象 
tree = ET.parse(annot_path)  # 获取根元素: xml文档最外层的元素 
root = tree.getroot()

skimage库

import skimage  # 生成多边形的像素坐标 
# x: 一维数组, 多边形的列坐标; y: 一维数组, 多边形的行坐标 
# shape: 指定输出坐标的图像形状 
# rows, cols: 多边形内部像素的行和列坐标 
# 多边形内部是指,所有的多边形都被填充好了 
rows, cols = skimage.draw.polygon(x, y, shape)

PIL.Image库 PIL.Image.Image

from PIL import Image  image = Image.open(path)  
# 查看image的mode和channel nums 
print(f"Image mode: {image.mode}") 
print(f"Number of channels: {len(image.getbands())}")  
# 转换mode mask = mask.convert("P")

detectron2库

数据增强

  1. 允许同时增强多种数据类型,如图像、边界框、掩码。
  2. 允许应用一系列静态声明的增强。
  3. 允许添加自定义新数据类型来增强,如旋转边界框、视频剪辑。
  4. 处理和操纵增强增强应用的operations。
    如何在编写新的数据加载器时使用增强,如何编写新的增强。

MaskFormerSemanticDatasetMapper类:

  1. 从file_name读取image
  2. 将几何变换应用到image和annotation
  3. 查找合适的cropping,将其应用于image和annotation
  4. 把image和annotation变成Tensors

MetadataCatalog类常见属性

  1. stuff_classes:每个stuff类别的名称list,用于语义分割和全景分割。
  2. stuff_colors:每个stuff类别的预定义颜色(0-255),用于可视化。如果没有指定,则使用随机颜色。list[tuple(r, g, b)].
  3. ignore_label:int,gt中带有该类别标签的像素将在评估里被忽略,用于语义和全景分割任务。

faiss库-聚类

Faiss库的使用:

  1. faiss索引包括:IndexFlatL2(小规模数据集)、IndexIVFFlat(大规模数据集)、IndexHNSW(高维数据)。
  2. 查询相似度 D, I = index.search(features, k)。对每个样本,查询与其他样本的相似度,D是距离矩阵,I是索引矩阵,返回每个样本的前k个最近邻。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/69670.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Oracle专栏】本地 expdp 导出远程库

Oracle相关文档,希望互相学习,共同进步 风123456789~-CSDN博客 1.背景 近期需要在远程备份机器上远程导出数据库,之前用expdp数据泵只导出过本服务器的,本文跨服务器使用expdp 。 2. 测试 2.1 本机装完整oracle时,执行expdp导出远端数据库 实验说明:以下12为本机,14…

Flink KafkaConsumer offset是如何提交的

一、fllink 内部配置 client.id.prefix,指定用于 Kafka Consumer 的客户端 ID 前缀partition.discovery.interval.ms,定义 Kafka Source 检查新分区的时间间隔。 请参阅下面的动态分区检查一节register.consumer.metrics 指定是否在 Flink 中注册 Kafka…

【leetcode】双指针:移动零 and 复写零

文章目录 1.移动零2.复写零 1.移动零 class Solution { public:void moveZeroes(vector<int>& nums) {for (int cur 0, dest -1; cur < nums.size(); cur)if (nums[cur] ! 0)swap(nums[dest], nums[cur]);} };class Solution { public:void moveZeroes(vector&l…

网络安全工程师逆元计算 网络安全逆向

中职逆向题目整理合集 逆向分析&#xff1a;PE01.exe算法破解&#xff1a;flag0072算法破解&#xff1a;flag0073算法破解&#xff1a;CrackMe.exe远程代码执行渗透测试天津逆向re1 re22023江苏省re12023年江苏省赛re2_easygo.exe2022天津市PWN 逆向分析&#xff1a;PE01.exe …

string类(二)

目录 前言 string类的常用接口说明 3、string类对象的容量操作 3.1 size&#xff0c;length和capacity 3.2 empty和clear 3.3 reserve 3.4 resize 4、string类的修改操作 4.1 operator 4.2 c_str 4.3 findnpos 5、string类非成员函数 5.1 operator>>和opera…

医疗影响分割 | 使用 Swin UNETR 训练自己的数据集(3D医疗影像分割教程)

<Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images> 代码地址:unetr 论文地址:https://arxiv.org/pdf/2201.01266 一、下载代码 在Github上下载代码,然后进入SWINUNETR,前两个是针对两个数据集(BRATS21、BTCV)的操作,这里…

在CAD中插入图块后为什么看不到?怎么解决?

按照正确操作插入图块&#xff0c;但图纸上不显示新插入的图块&#xff0c;这是为什么&#xff1f; 原因可能是大家插入的图块太小&#xff0c;导致看不到&#xff0c;显示成一个点&#xff0c;所以大家插入图块的时候记得根据图纸大小&#xff0c;将比例改大一些就可以啦✌️…

【CMAEL多智能体框架】第一节 环境搭建及简单应用(构建一个鲜花选购智能体)

第一节 环境搭建 文章目录 第一节 环境搭建前言一、安装二、获取API1. 使用熟悉的API代理平台2.设置不使用明文存放API 三 、具体应用进阶任务 总结 前言 CAMEL Multi-Agent是一个开源的、灵活的框架&#xff0c;它提供了一套完整的工具和库&#xff0c;用于构建和模拟多智能体…

Flink-序列化

一、概述 几乎每个Flink作业都必须在其运算符之间交换数据&#xff0c;由于这些记录不仅可以发送到同一JVM中的另一个实例&#xff0c;还可以发送到单独的进程&#xff0c;因此需要先将记录序列化为字节。类似地&#xff0c;Flink的堆外状态后端基于本地嵌入式RocksDB实例&…

使用DeepSeek和Kimi快速自动生成PPT

目录 步骤1&#xff1a;在DeepSeek中生成要制作的PPT主要大纲内容。 &#xff08;1&#xff09;在DeepSeek网页端生成 &#xff08;2&#xff09;在本地部署DeepSeek后&#xff0c;使用chatBox生成PPT内容 步骤2&#xff1a;将DeepSeek成的PPT内容复制到Kimi中 步骤3&…

第41天:Web开发-JS应用微信小程序源码架构编译预览逆向调试嵌套资产代码审计

#知识点 1、安全开发-微信小程序-搭建&开发&架构&安全 2、安全开发-微信小程序-编译调试&反编译&泄露 一、小程序创建&#xff08;了解即可&#xff09; 1、下载微信开发者工具 2、创建小程序模版引用 https://developers.weixin.qq.com/miniprogram/dev/d…

Arduino 第十一章:温度传感器

Arduino 第十一章&#xff1a;LM35 温度传感器 一、LM35 简介 LM35 是美国国家半导体公司&#xff08;现德州仪器&#xff09;生产的一款精密集成电路温度传感器。与基于热力学原理的传统温度传感器不同&#xff0c;LM35 能直接将温度转换为电压输出&#xff0c;且输出电压与…

Oracle常用导元数据方法

1 说明 前两天领导发邮件要求导出O库一批表和索引的ddl语句做国产化测试&#xff0c;涉及6个系统&#xff0c;6千多张表&#xff0c;还好涉及的用户并不多&#xff0c;要不然很麻烦。 如此大费周折原因&#xff0c;是某国产库无法做元数据迁移。。。额&#xff0c;只能我手动导…

2022java面试总结,1000道(集合+JVM+并发编程+Spring+Mybatis)的Java高频面试题

1、面试题模块汇总 面试题包括以下十九个模块&#xff1a; Java 基础、容器、多线程、反射、对象拷贝、Java Web 模块、异常、网络、设计模式、Spring/Spring MVC、Spring Boot/Spring Cloud、Hibernate、Mybatis、RabbitMQ、Kafka、Zookeeper、MySql、Redis、JVM 。如下图所示…

Curser2_解除机器码限制

# Curser1_无限白嫖试用次数 文末有所需工具下载地址 Cursor Device ID Changer 一个用于修改 Cursor 编辑器设备 ID 的跨平台工具集。当遇到设备 ID 锁定问题时&#xff0c;可用于重置设备标识。 功能特性 ✨ 支持 Windows 和 macOS 系统&#x1f504; 自动生成符合格式的…

carbon 加入 GitCode:Golang 时间处理的 “瑞士军刀”

在 Golang 的开发生态中&#xff0c;时间处理领域长期存在着诸多挑战。高效、精准的时间处理对于各类软件应用的稳定运行与功能拓展至关重要。近日&#xff0c;carbon 正式加入 GitCode&#xff0c;为 Golang 开发者带来一款强大且便捷的时间处理利器&#xff0c;助力项目开发迈…

算法学习--链表

引言&#xff1a;为什么进行链表的学习&#xff1f; 考察能力独特&#xff1a;链表能很好地考察应聘者对指针操作、内存管理的理解和运用能力&#xff0c;还能检验代码的鲁棒性&#xff0c;比如处理链表的插入、删除操作时对边界条件的处理。数据结构基础&#xff1a;链表是很多…

域名劫持原理与实践

了解域名及域名劫持 由于点分十进制的IP地址难于记忆&#xff0c;便出现了域名。由于网络传输中最终还是基于IP&#xff0c;所以必须通过一种机制将IP和域名一一对应起来&#xff0c;这便是DNS。全球总共有13台根域名服务器。 域名劫持是互联网攻击中常见的一种攻击方式&…

【论文翻译】DeepSeek-V3论文翻译——DeepSeek-V3 Technical Report——第二部分:(训练硬件)基础设施

论文原文链接&#xff1a;DeepSeek-V3/DeepSeek_V3.pdf at main deepseek-ai/DeepSeek-V3 GitHub 特别声明&#xff0c;本文不做任何商业用途&#xff0c;仅作为个人学习相关论文的翻译记录。本文对原文内容直译&#xff0c;一切以论文原文内容为准&#xff0c;对原文作者表示…

MapReduce到底是个啥?

在聊 MapReduce 之前不妨先看个例子&#xff1a;假设某短视频平台日活用户大约在7000万左右&#xff0c;若平均每一个用户产生3条行为日志&#xff1a;点赞、转发、收藏&#xff1b;这样就是两亿条行为日志&#xff0c;再假设每条日志大小为100个字节&#xff0c;那么一天就会产…