DeepAR:一种用于时间序列预测的深度学习模型

介绍

DeepAR是一种基于递归神经网络(RNN)的时间序列预测模型,由亚马逊在2017年提出。它特别适用于处理多变量时间序列数据,并能够生成概率预测。DeepAR通过联合训练多个相关时间序列来提高预测性能,从而在实际应用中表现出色。

工作原理

模型架构

DeepAR的核心是一个基于LSTM(长短期记忆网络)的递归神经网络。其主要组成部分包括:

  1. 输入层:时间序列数据及其相关的协变量。
  2. 编码器:一个LSTM网络,用于捕捉时间序列的历史信息。
  3. 解码器:另一个LSTM网络,用于生成未来的预测值。
  4. 输出层:生成预测值的概率分布(通常是高斯分布或负二项分布)。

训练过程

  1. 数据准备

    • 输入数据包括历史观测值和协变量(如日期特征、外部因素等)。
    • 每个时间序列被分成训练集和测试集。
  2. 模型训练

    • 对于每个时间点,模型使用之前的观测值和协变量作为输入,生成当前时间点的预测值。
    • 损失函数通常采用负对数似然(Negative Log-Likelihood, NLL),以最大化预测分布的对数似然。
  3. 采样与预测

    • 在预测阶段,模型通过对未来时间点进行多次采样来生成预测分布。
    • 采样结果可以用来计算预测的均值、分位数等统计量。

优势

  • 联合建模:DeepAR通过联合训练多个相关时间序列,能够更好地捕捉时间序列之间的相互关系,提高预测精度。
  • 概率预测:生成的预测不仅包含点估计,还包括预测值的概率分布,有助于评估预测的不确定性。
  • 灵活性:可以处理不同长度和频率的时间序列数据,并且支持多种类型的协变量。

应用案例

零售需求预测

在零售业中,准确的需求预测对于库存管理和供应链优化至关重要。DeepAR可以应用于多个商品类别的销售数据,通过联合建模来提高预测精度。例如,亚马逊在其零售业务中使用DeepAR来预测不同产品的销售量,从而优化库存水平。

能源消耗预测

能源公司需要准确预测电力、天然气等能源的消耗量,以便合理调度资源。DeepAR可以结合历史能耗数据和天气预报等协变量,生成未来能耗的概率预测,帮助能源公司做出更合理的决策。

金融数据分析

在金融领域,股票价格、汇率等时间序列数据具有高度的不确定性和波动性。DeepAR可以通过生成概率预测,帮助投资者更好地理解和管理风险。例如,可以使用DeepAR来预测股票价格的变化,为交易策略提供支持。

实现步骤

数据准备

  1. 收集数据:获取时间序列数据及其相关的协变量。
  2. 预处理
    • 处理缺失值。
    • 标准化或归一化数据。
    • 提取时间特征(如月份、星期几等)。

模型构建

import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDatasetclass DeepAR(nn.Module):def __init__(self, input_size, hidden_size, output_size, num_layers=1):super(DeepAR, self).__init__()self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)self.linear = nn.Linear(hidden_size, output_size)def forward(self, x, h):out, h = self.lstm(x, h)out = self.linear(out)return out, h# 参数设置
input_size = 5  # 输入特征维度
hidden_size = 64  # LSTM隐藏层大小
output_size = 1  # 输出维度
num_layers = 1  # LSTM层数
batch_size = 32  # 批次大小
epochs = 100  # 训练轮数# 初始化模型
model = DeepAR(input_size, hidden_size, output_size, num_layers)
criterion = nn.GaussianNLLLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 数据加载
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)# 训练模型
for epoch in range(epochs):for i, (inputs, targets) in enumerate(train_loader):optimizer.zero_grad()h = Noneoutputs, h = model(inputs, h)loss = criterion(outputs, targets, torch.ones_like(outputs))loss.backward()optimizer.step()print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}')

模型评估

  1. 生成预测

    • 使用训练好的模型对测试集进行预测。
    • 通过多次采样生成预测分布。
  2. 评估指标

    • 计算均方误差(MSE)、平均绝对误差(MAE)等点估计指标。
    • 评估预测分布的覆盖范围和置信区间。

结果分析

  • 可视化:绘制预测值与真实值的对比图。
  • 不确定性分析:展示预测分布的置信区间,评估预测的不确定性。

总结

DeepAR是一种强大的时间序列预测模型,特别适用于多变量时间序列数据。通过联合建模和生成概率预测,DeepAR能够在多种应用场景中提供高精度的预测结果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/69682.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++ ——从C到C++

1、C的学习方法 (1)C知识点概念内容比较多,需要反复复习 (2)偏理论,有的内容不理解,可以先背下来,后续可能会理解更深 (3)学好编程要多练习,简…

<tauri><rust><GUI>基于rust和tauri的图片显示程序(本地图片的加载、显示、保存)

前言 本文是基于rust和tauri,由于tauri是前、后端结合的GUI框架,既可以直接生成包含前端代码的文件,也可以在已有的前端项目上集成tauri框架,将前端页面化为桌面GUI。 环境配置 系统:windows 10 平台:visual studio code 语言:rust、javascript 库:tauri2.0 概述 …

Arrays工具类详解

目录 1. Arrays.toString() 方法 2. Arrays.deepToString() 方法 3. Arrays.equals(int[ ] arr1, int[ ] arr2) 方法 4. Arrays.equals(Object[] arr1, Object[] arr2) 方法 5. Arrays.deepEquals(Object[] arr1, Object[] arr2) 方法 6. Arrays.sort(int[] arr) 方法 7…

设计高效的测试用例:从需求到验证

在现代软件开发过程中,测试用例的设计一直是质量保证(QA)环节的核心。有效的测试用例不仅能够帮助发现潜在缺陷,提升软件质量,还能降低后期修复成本,提高开发效率。尽管如此,如何从需求出发&…

基于YoloV11和驱动级鼠标模拟实现Ai自瞄

本文将围绕基于 YoloV11 和驱动级鼠标实现 FPS 游戏 AI 自瞄展开阐述。 需要着重强调的是,本文内容仅用于学术研究和技术学习目的。严禁任何个人或组织将文中所提及的技术、方法及思路应用于违法行为,包括但不限于在各类游戏中实施作弊等违规操作。若因违…

三角测量——用相机运动估计特征点的空间位置

引入 使用对极约束估计了相机运动后,接下来利用相机运动估计特征点的空间位置,使用的方法就是三角测量。 三角测量 和对极几何中的对极几何约束描述类似: z 2 x 2 R ( z 1 x 1 ) t z_2x_2R(z_1x_1)t z2​x2​R(z1​x1​)t 经过对极约束…

如何本地部署DeepSeek

第一步:安装ollama https://ollama.com/download 打开官网,选择对应版本 第二步:选择合适的模型 https://ollama.com/ 模型名称中的 1.5B、7B、8B 等数字代表模型的参数量(Parameters),其中 B 是英文 B…

Git生成公钥和私钥的方式

因为需要访问远程Git服务器,需要使用公钥: 1、先检测电脑上是否已经有.ssh目录 像我这就是没有的 2、开始生成一个新的SSH密钥(RSA) 打开Git Bash, 然后运行ssh-keygen -t rsa -b 4096 -C "注释" -t rsa是密匙类型…

常用的python库-安装与使用

常用的python库函数 yield关键字openslide库openslide库的安装-linuxopenslide的使用openslide对象的常用属性 cv2库numpy库ASAP库-multiresolutionimageinterface库ASAP库的安装ASAP库的使用 concurrent.futures.ThreadPoolExecutorxml.etree.ElementTree库skimage库PIL.Image…

【Oracle专栏】本地 expdp 导出远程库

Oracle相关文档,希望互相学习,共同进步 风123456789~-CSDN博客 1.背景 近期需要在远程备份机器上远程导出数据库,之前用expdp数据泵只导出过本服务器的,本文跨服务器使用expdp 。 2. 测试 2.1 本机装完整oracle时,执行expdp导出远端数据库 实验说明:以下12为本机,14…

Flink KafkaConsumer offset是如何提交的

一、fllink 内部配置 client.id.prefix,指定用于 Kafka Consumer 的客户端 ID 前缀partition.discovery.interval.ms,定义 Kafka Source 检查新分区的时间间隔。 请参阅下面的动态分区检查一节register.consumer.metrics 指定是否在 Flink 中注册 Kafka…

【leetcode】双指针:移动零 and 复写零

文章目录 1.移动零2.复写零 1.移动零 class Solution { public:void moveZeroes(vector<int>& nums) {for (int cur 0, dest -1; cur < nums.size(); cur)if (nums[cur] ! 0)swap(nums[dest], nums[cur]);} };class Solution { public:void moveZeroes(vector&l…

网络安全工程师逆元计算 网络安全逆向

中职逆向题目整理合集 逆向分析&#xff1a;PE01.exe算法破解&#xff1a;flag0072算法破解&#xff1a;flag0073算法破解&#xff1a;CrackMe.exe远程代码执行渗透测试天津逆向re1 re22023江苏省re12023年江苏省赛re2_easygo.exe2022天津市PWN 逆向分析&#xff1a;PE01.exe …

string类(二)

目录 前言 string类的常用接口说明 3、string类对象的容量操作 3.1 size&#xff0c;length和capacity 3.2 empty和clear 3.3 reserve 3.4 resize 4、string类的修改操作 4.1 operator 4.2 c_str 4.3 findnpos 5、string类非成员函数 5.1 operator>>和opera…

医疗影响分割 | 使用 Swin UNETR 训练自己的数据集(3D医疗影像分割教程)

<Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images> 代码地址:unetr 论文地址:https://arxiv.org/pdf/2201.01266 一、下载代码 在Github上下载代码,然后进入SWINUNETR,前两个是针对两个数据集(BRATS21、BTCV)的操作,这里…

在CAD中插入图块后为什么看不到?怎么解决?

按照正确操作插入图块&#xff0c;但图纸上不显示新插入的图块&#xff0c;这是为什么&#xff1f; 原因可能是大家插入的图块太小&#xff0c;导致看不到&#xff0c;显示成一个点&#xff0c;所以大家插入图块的时候记得根据图纸大小&#xff0c;将比例改大一些就可以啦✌️…

【CMAEL多智能体框架】第一节 环境搭建及简单应用(构建一个鲜花选购智能体)

第一节 环境搭建 文章目录 第一节 环境搭建前言一、安装二、获取API1. 使用熟悉的API代理平台2.设置不使用明文存放API 三 、具体应用进阶任务 总结 前言 CAMEL Multi-Agent是一个开源的、灵活的框架&#xff0c;它提供了一套完整的工具和库&#xff0c;用于构建和模拟多智能体…

Flink-序列化

一、概述 几乎每个Flink作业都必须在其运算符之间交换数据&#xff0c;由于这些记录不仅可以发送到同一JVM中的另一个实例&#xff0c;还可以发送到单独的进程&#xff0c;因此需要先将记录序列化为字节。类似地&#xff0c;Flink的堆外状态后端基于本地嵌入式RocksDB实例&…

使用DeepSeek和Kimi快速自动生成PPT

目录 步骤1&#xff1a;在DeepSeek中生成要制作的PPT主要大纲内容。 &#xff08;1&#xff09;在DeepSeek网页端生成 &#xff08;2&#xff09;在本地部署DeepSeek后&#xff0c;使用chatBox生成PPT内容 步骤2&#xff1a;将DeepSeek成的PPT内容复制到Kimi中 步骤3&…

第41天:Web开发-JS应用微信小程序源码架构编译预览逆向调试嵌套资产代码审计

#知识点 1、安全开发-微信小程序-搭建&开发&架构&安全 2、安全开发-微信小程序-编译调试&反编译&泄露 一、小程序创建&#xff08;了解即可&#xff09; 1、下载微信开发者工具 2、创建小程序模版引用 https://developers.weixin.qq.com/miniprogram/dev/d…