MapReduce到底是个啥?

在聊 MapReduce 之前不妨先看个例子:假设某短视频平台日活用户大约在7000万左右,若平均每一个用户产生3条行为日志:点赞、转发、收藏;这样就是两亿条行为日志,再假设每条日志大小为100个字节,那么一天就会产生将近20个GB左右的数据;

面对这么大的数据量,如何对这些数做一些统计分析呢?

Java为例:如果写一个程序,从一个近20个GB的日志文件里,一条一条读取日志并计算,直到两亿数据全部计算完毕,你认为会花费多长时间?

不妨做个实验,随机生产从0到100的数字,并将其写入文件当中,最终生成一个大小为20个GB左右的文件:

public void generateData() throws IOException {File file = new File("D:\\微信公众号\菜鸟进阶站.txt");if (!file.exists()) {try {file.createNewFile();} catch (IOException e) {e.printStackTrace();}}BufferedWriter bos = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file, true)));for (long i = 1; i < Integer.MAX_VALUE * 3.4; i++) {String data = String.valueOf(random.nextInt(100)+1);bos.write(data);if (i % 1000000 == 0) {bos.write("\n");}}bos.close();
}

使用代码来统计哪一个数字出现的次数最多(执行过程忘记截图了),最后得出结论:整个统计过程大概用了12分钟左右;目前还仅仅是 GB级别,如果是 TB、PB呢?

作为科技巨头的大佬:Google(谷歌)对该问题给出了答案;

谷歌从2003年到2006年先后发表了三篇论文:GFS、MapReduce和Big Table。俗称三架马车,也正是这三驾马车正式打开了大数据的大门;今天我们主要聊一聊其中的MapReduce

该模型可以让开发者不用去考虑复杂的分布式架构,使得编写分布式代码就像单机版一样简单,自动将大任务拆分成小任务,分发到不同的机器上面进行并行计算;

简单来说 MapReduce的核心思想就是分而治之;

说到分而治之,就让我想起来小时候语文老师给我们的留的作业,抄写鲁迅的所有文章。这工作量可算是巨大的了;

为了能按时提交作业,我便将作业撕成了3份,张三一份、李四一份、王五一份;让他们分别区抄写其中的一部分,最后由我将3份作业订装在一起交给老师;这整个过程中:将作业撕开分别交给3个人便是 Map,最后我把作业组装起来便是 Reduce

上述过程只是一个笼统的概念。细的说,其实 MapReduce 大致话可以分为 Map、shuffle、Reduce 3个过程:

首先根据数据量大小,生产多个 Map任务,每个 Map任务会读取原数据并进行逻辑处理,最终生产一个 KV键值对;同时对每条数据根据 key 的值计算所属分区,并打上一个逻辑标识,用来决定改数据回去到哪一个 Reduce

Shuffle 过程包含在 MapReduce 的两端,Map 端的 Shuffle 会对数据进行一个排序,得到一个有序的文件,该文件按照分区排序,并且每个分区内部的键值对都按照 Key 的值进行升序排序;Reduce 端的 Shuffle,会去拉取属于自己分区的数据,并进行一个合并排序; Reduce 端根据业务需求,会对数据做进一步的处理并输出结果;

从上述过程中可以看出,Reduce 数量也就是分区的数量,分区相同的数据会经过 Shuffle 到达同一个 Reduce 当中;

WordCount 为例,该程序用来统计每个单词出现的次数:现在假设有份巨大的文件,我们将该文件进行切分,切分成三个 Map 任务,每个 Map 会对每行的内容按空格切分,每切下一个单词我们就将其组成一个 KV 键值对,其中 Key 代表这个单词 ,Value 代表该单词出现的次数;

Map端切分

由于我们的目标是统计每个单词出现的次数,因此我们只需要一个 Reduce 即可,在经过 MapShuffle 排序后,在每个 Map 端会生成一个有序的文件;

MapShuffle

Reduce 端的 Shuffle 会去拉取属于自己分区的数据,并作为一个合并排序,最后 Reduce 会遍历每个单词对于的数组进行累加,并进行结果的直接输出;

Reduce端

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/69637.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Error: llama runner process has terminated: exit status 0xc0000409 问题解决办法

在大模型部署过程中&#xff0c;格式转换环节若使用了高版本的 llama.cpp 库&#xff0c;而系统当前运行的版本较低&#xff0c;就会出现版本不兼容的情况。 这种不匹配会阻碍模型的正常运行&#xff0c;进而导致报错。建议你密切关注模型所需的版本要求&#xff0c;及时将系统…

代码随想录-训练营-day20

今天我们继续回溯&#xff1a; 39. 组合总和 - 力扣&#xff08;LeetCode&#xff09; 这个题和我们之前的组合题相比&#xff0c;最大的区别在于我们可以无限次的重复取用某值了&#xff0c;这就让我们的递归参数与之前不同&#xff0c;除此之外&#xff0c;本质上这个题与21…

ubuntu 本地部署deepseek r1 蒸馏模型

本文中的文件路径或网络代理需要根据自身环境自行删改 一、交互式chat页面 1.1 open-webui 交互窗口部署&#xff1a;基于docker安装&#xff0c;且支持联网搜索 Open WebUI 是一个可扩展、功能丰富且用户友好的自托管 AI 平台&#xff0c;旨在完全离线操作。它支持各种 LLM…

数据库 绪论

目录 数据库基本概念 一.基本概念 1.信息 2.数据 3.数据库&#xff08;DB&#xff09; 4.数据库管理系统&#xff08;DBMS&#xff09; 5.数据库系统&#xff08;DBS&#xff09; 二.数据管理技术的发展 1.人工管理阶段 2.文件系统阶段 3.数据库系统阶段 4.数据库管…

数据中台是什么?:架构演进、业务整合、方向演进

文章目录 1. 引言2. 数据中台的概念与沿革2.1 概念定义2.2 历史沿革 3. 数据中台的架构组成与关键技术要素解析3.1 架构组成3.2 关键技术要素 4. 数据中台与其他平台的对比详细解析 5. 综合案例&#xff1a;金融行业数据中台落地实践5.1 背景5.2 解决方案5.3 成果与价值 6. 方向…

【DeepSeek】DeepSeek概述 | 本地部署deepseek

目录 1 -> 概述 1.1 -> 技术特点 1.2 -> 模型发布 1.3 -> 应用领域 1.4 -> 优势与影响 2 -> 本地部署 2.1 -> 安装ollama 2.2 -> 部署deepseek-r1模型 1 -> 概述 DeepSeek是由中国的深度求索公司开发的一系列人工智能模型&#xff0c;以其…

如何使用C++将处理后的信号保存为PNG和TIFF格式

在信号处理领域&#xff0c;我们常常需要将处理结果以图像的形式保存下来&#xff0c;方便后续分析和展示。C提供了多种库来处理图像数据&#xff0c;本文将介绍如何使用stb_image_write库保存为PNG格式图像以及使用OpenCV库保存为TIFF格式图像。 1. PNG格式保存 使用stb_ima…

查出 product 表中所有 detail 字段包含 xxx 的完整记录

您可以使用以下 SQL 查询语句来查出 product 表中所有 detail 字段包含 oss.kxlist.com 的完整记录&#xff1a; SELECT * FROM product WHERE INSTR(detail, oss.kxlist.com) > 0;下面是detail字段包含的完整内容 <p><img style"max-width:100%;" src…

微服务 day01 注册与发现 Nacos OpenFeign

目录 1.认识微服务&#xff1a; 单体架构&#xff1a; 微服务架构&#xff1a; 2.服务注册和发现 1.注册中心&#xff1a; 2.服务注册&#xff1a; 3.服务发现&#xff1a; 发现并调用服务&#xff1a; 方法1&#xff1a; 方法2&#xff1a; 方法3:OpenFeign OpenFeig…

Shell原理简介与Linux中的权限问题

一、Shell命令及运行原理 1.1通常说的计算机体系结构指的是什么 通常意义上的计算机体系结构指的是芯片&#xff1a; 如锐龙amd&#xff0c;英特尔酷睿intel core 他们分为 x86&#xff1a;32位 x86_64&#xff1a;64位 两种 1.2广义上的Linux系统分为哪些部分&#xf…

在rtthread中,scons构建时,它是怎么知道是从rtconfig.h找宏定义,而不是从其他头文件找?

在rtthread源码中&#xff0c;每一个bsp芯片板级目录下都有一个 SConstruct scons构建脚本的入口&#xff0c; 在这里把rtthread tools/目录下的所有模块都添加到了系统路径中&#xff1a; 在tools下所有模块中&#xff0c;最重要的是building.py模块&#xff0c;在此脚本里面…

C# Winform 使用委托实现C++中回调函数的功能

C# Winform 使用委托实现C中回调函数的功能 在项目中遇到了使用C#调用C封装的接口&#xff0c;其中C接口有一个回调函数的参数。参考对比后&#xff0c;在C#中是使用委托(delegate)来实现类似的功能。 下面使用一个示例来介绍具体的使用方式&#xff1a; 第一步&#xff1a;…

深度学习之神经网络框架搭建及模型优化

神经网络框架搭建及模型优化 目录 神经网络框架搭建及模型优化1 数据及配置1.1 配置1.2 数据1.3 函数导入1.4 数据函数1.5 数据打包 2 神经网络框架搭建2.1 框架确认2.2 函数搭建2.3 框架上传 3 模型优化3.1 函数理解3.2 训练模型和测试模型代码 4 最终代码测试4.1 SGD优化算法…

2025.2.9 每日学习记录2:技术报告写了一半+一点点读后感

0.近期主任务线 1.完成小论文准备 目标是3月份完成实验点1的全部实验和论文。 2.准备教资笔试 打算留个十多天左右&#xff0c;一次性备考笔试的三个科目 1.实习申请技术准备&#xff1a;微调、Agent、RAG 1.今日完成任务 1.电子斗蛐蛐&#xff08;文本书写领域&am…

9 Pydantic复杂数据结构的处理

在构建现代 Web 应用时&#xff0c;我们往往需要处理复杂的输入和输出数据结构。例如&#xff0c;响应数据可能包含嵌套字典、列表、元组&#xff0c;甚至是多个嵌套对象。Pydantic 是一个强大的数据验证和序列化库&#xff0c;可以帮助我们轻松地处理这些复杂的数据结构&#…

链表(LinkedList) 1

上期内容我们讲述了顺序表&#xff0c;知道了顺序表的底层是一段连续的空间进行存储(数组)&#xff0c;在插入元素或者删除元素需要将顺序表中的元素整体移动&#xff0c;时间复杂度是O(n)&#xff0c;效率比较低。因此&#xff0c;在Java的集合结构中又引入了链表来解决这一问…

torch_bmm验算及代码测试

文章目录 1. torch_bmm2. pytorch源码 1. torch_bmm torch.bmm的作用是基于batch_size的矩阵乘法,torch.bmm的作用是对应batch位置的矩阵相乘&#xff0c;比如&#xff0c; mat1的第1个位置和mat2的第1个位置进行矩阵相乘得到mat3的第1个位置mat1的第2个位置和mat2的第2个位置…

shell+kafka实现服务器健康数据搜集

今天有一个徒弟问我&#xff0c;分发、代理服务器都装有kafka&#xff0c;如何快速收集服务器的健康数据&#xff0c;每10秒就收集一次&#xff1f; 我当时听完之后&#xff0c;楞了一下&#xff0c;然后说出了我的见解&#xff1a;认为最快速的方法无法就是建议shell脚本直接采…

macbook2015升级最新MacOS 白苹果变黑苹果

原帖&#xff1a;https://www.bilibili.com/video/BV13V411c7xz/MAC OS系统发布了最新的Sonoma&#xff0c;超酷的动效锁屏壁纸&#xff0c;多样性的桌面小组件&#xff0c;但是也阉割了很多老款机型的升级权利&#xff0c;所以我们可以逆向操作&#xff0c;依旧把老款MAC设备强…

建筑物损坏程度分割数据集labelme格式2816张5类别

数据集格式&#xff1a;labelme格式(不包含mask文件&#xff0c;仅仅包含jpg图片和对应的json文件) 图片数量(jpg文件个数)&#xff1a;2816 标注数量(json文件个数)&#xff1a;2816 标注类别数&#xff1a;5 标注类别名称:["minor-damage","destroyed&quo…