Python中差分进化differential_evolution的调用及参数说明

在场景应用中,要求我们的函数计算结果尽可能的逼近实际测量结果,可转化计算结果与测量结果的残差,通过最小化残差,便可求出最优的结果。但使用最小二乘等方法来计算时,常常会使迭代的结果显然局部最优点而导致结算错误。

差分进化原理

差分进化(Differential Evolution,DE)是一种基于群体差异的进化算法,其计算思想主要包括以下几个方面:

一、初始化种群

首先,随机生成一个初始种群。这个种群由若干个个体组成,每个个体代表问题的一个潜在解。在实际应用中,个体通常是一个向量,其维度取决于问题的变量个数。例如,对于一个二维优化问题,个体可能是一个包含两个元素的向量。

二、变异操作

差分进化的核心是变异操作。对于每个个体,通过以下方式生成一个变异个体:

  1. 随机选择三个不同的个体 x r 1 x_r1 xr1 x r 2 x_r2 xr2 x r 3 x_r3 xr3 从当前种群中。
  2. 计算差分向量 d = x r 2 − x r 3 d = x_r2 - x_r3 d=xr2xr3
  3. 然后,通过将当前个体 x i x_i xi 与差分向量进行加权组合来生成变异个体 v i v_i vi,即 v i = x i + F ⋅ d v_i = x_i + F \cdot d vi=xi+Fd,其中 F F F 是变异因子,通常是一个在 0 到 2 之间的常数。

变异操作的目的是引入新的基因组合,增加种群的多样性,从而探索搜索空间的不同区域。

三、交叉操作

接下来,进行交叉操作,将变异个体与当前个体进行交叉,生成一个试验个体。交叉操作的方式有多种,常见的是二项式交叉。具体步骤如下:

  1. 对于每个维度 j j j,随机生成一个在 0 到 1 之间的数 r j r_j rj
  2. 如果 r j r_j rj 小于交叉概率 C R CR CR(通常在 0 到 1 之间)或者 j j j 等于随机选择的一个维度索引,那么试验个体的第 j j j 个维度的值从变异个体中获取,即 u i j = v i j u_{ij}=v_{ij} uij=vij;否则,试验个体的第 j j j 个维度的值从当前个体中获取,即 u i j = x i j u_{ij}=x_{ij} uij=xij

交叉操作的目的是在保持一定多样性的同时,继承当前个体中的一些优良基因。

四、选择操作

最后,进行选择操作,确定是否用试验个体替换当前个体。选择操作通常基于目标函数值进行。如果试验个体的目标函数值优于当前个体的目标函数值,那么就用试验个体替换当前个体;否则,保持当前个体不变。

五、迭代过程

重复上述变异、交叉和选择操作,直到满足停止条件。停止条件可以是达到最大迭代次数、目标函数值达到一定精度或者在一定迭代次数内目标函数值没有明显改进等。

调用参数详解

scipy.optimize.differential_evolutionSciPy库中用于求解全局优化问题的一个非常强大的算法。这个算法基于遗传算法的原理,通过不断地迭代来寻找问题的最优解。下面,我将详细解释 differential_evolution 函数的主要参数、可选的求解方法、返回值以及调用经验。

(function) def differential_evolution(func: Any,bounds: Any,args: Any = (),strategy: str = 'best1bin',maxiter: int = 1000,popsize: int = 15,tol: float = 0.01,mutation: Any = (0.5, 1),recombination: float = 0.7,seed: Any | None = None,callback: Any | None = None,disp: bool = False,polish: bool = True,init: str = 'latinhypercube',atol: int = 0,updating: str = 'immediate',workers: int = 1,constraints: Any = (),x0: Any | None = None,*,integrality: Any | None = None,vectorized: bool = False
) -> OptimizeResult

scipy.optimize.differential_evolution中的参数设置
以下是对scipy.optimize.differential_evolution函数的详细解释:

  1. func

    • 含义:要最小化的目标函数。
    • 这个函数应该接受一个一维数组作为输入,并返回一个标量值,表示目标函数在该点的值。例如:def objective_function(x): return x[0]**2 + x[1]**2
  2. bounds

    • 含义:一个序列的元组,每个元组代表一个变量的边界。例如,对于一个二维问题,bounds=[(0, 10), (-5, 5)]表示第一个变量的范围是 0 到 10,第二个变量的范围是 -5 到 5。
    • 确保边界设置合理,以包含可能的最优解。如果边界设置过窄,可能会错过最优解;如果边界设置过宽,可能会增加计算时间。
  3. args

    • 含义:可选参数,目标函数的额外参数。如果目标函数需要除了输入变量之外的其他参数,可以通过这个参数传递。
    • 例如,如果目标函数是def objective_function(x, a, b): return (x[0] - a)**2 + (x[1] - b)**2,那么可以通过differential_evolution(objective_function, bounds, args=(2, 3))来调用,这里的(2, 3)就是传递给目标函数的额外参数ab
  4. strategy

    • 含义:差分进化策略。可选的值有:‘best1bin’、‘best1exp’、‘rand1exp’、‘randtobest1exp’、‘currenttobest1exp’、‘best2exp’、‘rand2exp’、‘randtobest1bin’、‘currenttobest1bin’、‘best2bin’、‘rand2bin’、‘rand1bin’。
    • 不同的策略在不同类型的问题上可能表现不同。一般来说,'best1bin’和’rand1bin’是比较常用的策略。可以尝试不同的策略,看哪个在特定问题上表现最好。
  5. maxiter

    • 含义:最大迭代次数。
    • 根据问题的复杂度和计算资源来设置。如果问题比较复杂,可以设置较大的迭代次数,但这也会增加计算时间。如果计算资源有限,可以适当减少迭代次数。
  6. popsize

    • 含义:种群大小。
    • 一般来说,较大的种群大小可以增加算法找到全局最优解的可能性,但也会增加计算时间。可以根据问题的复杂度和计算资源来调整种群大小。
  7. tol

    • 含义:收敛容忍度。当目标函数的改进小于这个值时,算法停止。
    • 较小的容忍度可以确保算法更接近全局最优解,但可能会增加计算时间。需要在精度和计算时间之间进行权衡。
  8. mutation

    • 含义:变异因子,控制差分向量的缩放。
    • 通常在 0.5 到 1 之间取值。较大的变异因子可以增加算法的探索能力,但可能会降低收敛速度。较小的变异因子可以提高收敛速度,但可能会陷入局部最优解。
  9. recombination

    • 含义:交叉概率,控制个体之间的基因交换。
    • 通常在 0 到 1 之间取值。较大的交叉概率可以增加算法的多样性,但可能会破坏好的解。较小的交叉概率可以保持好的解,但可能会降低算法的探索能力。
  10. seed

    • 含义:随机数种子,用于可重复的结果。
    • 如果需要可重复的结果,可以设置一个固定的种子值。如果不需要可重复的结果,可以不设置这个参数,让算法使用随机种子。
  11. callback

    • 含义:回调函数,在每次迭代后调用。
    • 可以定义一个回调函数,在每次迭代后执行一些特定的操作,例如记录优化过程中的中间结果、检查是否满足某些条件等。
  12. disp

    • 含义:是否打印优化过程的信息。
    • 如果设置为True,会打印每一代的最佳适应度值等信息。如果不需要打印信息,可以设置为False
  13. polish

    • 含义:是否在优化结束后使用局部优化方法进行精化。
    • 如果设置为True,会在差分进化算法找到的最优解附近使用局部优化方法(如 BFGS)进行精化,以提高解的精度。但这也会增加计算时间。如果对解的精度要求不高,可以设置为False

scipy.optimize.differential_evolution中的返回值

该函数返回一个OptimizeResult对象,包含以下属性:

  1. x:最优解的数组。
  2. fun:最优解对应的目标函数值。
  3. nfev:目标函数的评估次数。
  4. nit:实际迭代次数。
  5. message:优化结果的消息,例如“Maximum number of iterations reached”。

调用经验总结

  1. 在使用differential_evolution函数时,首先要确定目标函数和变量的边界。目标函数应该能够准确地反映问题的优化目标,边界应该合理地限制变量的取值范围。
  2. 根据问题的复杂度和计算资源,选择合适的参数值。例如,对于复杂的问题,可以设置较大的迭代次数和种群大小,但要注意计算时间。对于简单的问题,可以适当减少这些参数值,以提高计算效率。
  3. 尝试不同的差分进化策略,看哪个在特定问题上表现最好。可以从常用的策略开始尝试,如’best1bin’和’rand1bin’。
  4. 调整变异因子和交叉概率,以平衡算法的探索能力和收敛速度。可以通过实验来确定合适的参数值。
  5. 如果需要可重复的结果,可以设置随机数种子。如果需要打印优化过程的信息,可以设置disp=True
  6. 在优化结束后,可以考虑使用局部优化方法进行精化,以提高解的精度。但要注意计算时间的增加。
  7. 可以使用回调函数来记录优化过程中的中间结果或执行其他特定的操作。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/53405.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【redis】redis的特性和主要应用场景

文章目录 redis 的特性在内存中存储数据可编程的扩展能力持久化集群高可用快 redis 的应用场景实时数据存储缓存消息队列 redis 的特性 redis 的一些特性(优点)成就了它 在内存中存储数据 In-memory data structures MySQL 主要是通过“表”的方式来…

JavaEE-HTTPHTTPS

目录 HTTP协议 一、概念 二、http协议格式 http请求报文 http响应报文 URL格式 三、认识方法 四、认识报头 HTTP响应中的信息 HTTPS协议 对称加密 非对称加密 中间人攻击 解决中间人攻击 HTTP协议 一、概念 HTTP (全称为 "超⽂本传输协议") 是⼀种应⽤…

WEB项目解决CORS 跨域问题

为了安全,web默认是不允许跨域访问的。不过实际项目中,会遇到不同模块之间来回跳转的情况。所以,项目内部一般会修改配置或者代码来解决CORS跨域问题。 我的后端使用的是 Jetty 服务器,所以下面就拿jetty来举例。Jetty 提供了一个…

14.2 k8s中我们都需要监控哪些组件

本节重点介绍 : k8s中关注四大块指标总结 容器基础资源指标k8s资源指标k8s服务组件指标部署在pod中业务埋点指标 k8s关注指标分析 k8s中组件复杂,我们主要专注的无外乎四大块指标: 容器基础资源指标 为何关注这些指标 我们的应用从独享一台机器上…

springboot组件使用-mybatis组件使用

文章目录 springboot使用mybatis组件1. 添加依赖2. 配置数据源3. 创建实体类4. 创建Mapper接口5. 创建Mapper XML文件6. 使用Mapper7. 启动类配置 mybtis 动态SQL1. Mapper 注解2. Select 注解3. Insert 注解4. Update 注解5. Delete 注解6. Results 注解7. Param 注解8. Cache…

Mysql中的锁机制详解

一、概述 锁是计算机协调多个进程或线程并发访问某一资源的机制。 在数据库中,除了传统的计算资源(如CPU、RAM、I/O等)的争用以外,数据也是一种供需要用户共享的资源。如何保证数据并发访问的一致性、有效性是所有数据库必须解决…

一文讲懂Spring Event事件通知机制

目录 一 什么是spring event 二 怎么实现spring event 一 什么是spring event 我不会按照官方的解释来说什么是spring event,我只是按照自己的理解来解释,可能原理上会和官方有偏差,但是它的作用和功能就是这个,我更加偏向于从他…

Rust:Restful API 服务程序开发详述

0. 关于异步程序设计 0.1 对异步机制的理解 运行效率对于后端程序来讲很重要。我曾经以为,多线程机制是后端设计的终极方法,后来才发现,异步机制才是榨干 CPU 运行效率资源的关键所在。 我最初对于异步程序设计有误解,以为多线…

详解React setState调用原理和批量更新的过程

1. React setState 调用的原理 setState目录 1. React setState 调用的原理2. React setState 调用之后发生了什么?是同步还是异步?3. React中的setState批量更新的过程是什么? 具体的执行过程如下(源码级解析)&#x…

安卓13带有系统签名的应用不能正常使用webview 调用webview失败 系统应用app apk

总纲 android13 rom 开发总纲说明 文章目录 1.前言2.问题分析3.代码分析4.代码修改5.彩蛋1.前言 android版本高一些的平台,经常会遇到一些权限安全问题,像客户的应用如果带有系统签名,会导致不能正常使用webview问题。 2.问题分析 我们log信息,可以发现下面的提示: Fo…

网络层ip协议

一.概念 ip协议主要是为了在复杂的网络环境中确定一个合适的路径来传输主机间的数据。简单来说就是用来确定主机的位置。 ip协议中的一些设备如下: 主机: 配有 IP 地址, 但是不进行路由控制的设备;路由器: 即配有 IP 地址, 又能进行路由控制;节点: 主机和路由器的统…

分库分表:应对大数据量挑战的数据库扩展策略

随着互联网技术的发展,数据量的爆炸性增长给数据库系统带来了前所未有的挑战。为了有效管理大规模数据并保持高性能,分库分表成为了一种常见的数据库扩展策略。本文将探讨分库分表的概念、动机、实施策略以及潜在的挑战和解决方案。 什么是分库分表&…

传统CV算法——边缘算子与图像金字塔算法介绍

边缘算子 图像梯度算子 - Sobel Sobel算子是一种用于边缘检测的图像梯度算子,它通过计算图像亮度的空间梯度来突出显示图像中的边缘。Sobel算子主要识别图像中亮度变化快的区域,这些区域通常对应于边缘。它是通过对图像进行水平和垂直方向的差分运算来…

5.2.数据结构-c/c++二叉树详解(下篇)(算法面试题)

本章所有代码请见:5.3.数据结构-c/c二叉树代码-CSDN博客 上篇:5.数据结构-c/c二叉树详解(上篇)(遍历方法,完全二叉树)-CSDN博客 目录 1 求二叉树 第k层的节点 2 查找一个节点是否在二叉树中 3 求二叉树节点的个数 4 求二叉树…

Linux 删除 当前下的 mysql-8.0.31 空文件夹

在Linux中,如果你想要删除当前目录下的名为mysql-8.0.31的空文件夹(即该文件夹内没有任何文件或子文件夹),你可以使用rmdir命令。但是,如果mysql-8.0.31文件夹并非完全为空(即它包含文件或子文件夹&#xf…

在js中观察者模式讲解

在JavaScript中,观察者模式(Observer Pattern)是一种设计模式,允许一个对象(被观察者,Subject)维护一个依赖它的对象列表(观察者,Observer),并在它自身状态发生变化时自动通知这些观察者。观察者模式的典型使用场景包括事件系统、数据绑定和实时更新等情况。 一 、…

.Net Core 笔试1

1、用两个线程一个输出字母一个输出数字,交替输出Chat数组 char[] aI "1234567".ToCharArray();char[] aC "ABCDEFG".ToCharArray();Task task1 null;Task task2 null;task1 Task.Run(() >{foreach (var item in aI){Console.WriteLine…

数据结构(邓俊辉)学习笔记】排序 1——快速排序:算法A

文章目录 1. 分而治之2. 轴点3. 构造轴点4. 单调性 不变性5. 实例 1. 分而治之 主题就是排序。实际上我们对于排序问题并不陌生。你应该记得在最开始的几章,我们就分别介绍过起泡排序、插入排序、选择排序以及归并排序,而在介绍散列技术时,我…

自定义TextView实现结尾加载动画

最近做项目,仿豆包和机器人对话的时候,机器人返回数据是流式返回的,需要在文本结尾添加加载动画,于是自己实现了自定义TextView控件。 源码如下: import android.content.Context import android.graphics.Canvas imp…

Html、Css3动画效果

文章目录 第九章 动画9.1 transform动画9.2 transition过渡动画9.3 定义动画 第九章 动画 9.1 transform动画 transform 2D变形 translate():平移函数,基于X、Y坐标重新定位元素的位置 scale():缩放函数,可以使任意元素对象尺…