传统CV算法——边缘算子与图像金字塔算法介绍

边缘算子

图像梯度算子 - Sobel

Sobel算子是一种用于边缘检测的图像梯度算子,它通过计算图像亮度的空间梯度来突出显示图像中的边缘。Sobel算子主要识别图像中亮度变化快的区域,这些区域通常对应于边缘。它是通过对图像进行水平和垂直方向的差分运算来实现的,具体来说:

  • ddepth:输出图像的深度,通常设置为cv2.CV_64F来避免负数被截断。
  • dxdy 分别指定了水平和垂直方向的导数阶数,比如 dx=1, dy=0 就是对水平方向求一阶导数,用于检测垂直边缘;而 dx=0, dy=1 对应的是对垂直方向求一阶导数,用于检测水平边缘。
  • ksize 是Sobel算子的大小,它决定了滤波器的大小。ksize越大,滤波器覆盖的像素就越多,边缘检测就越模糊。常见的ksize值有1, 3, 5, 7。特别地,ksize=-1时会应用3x3的Scharr滤波器,它比3x3的Sobel滤波器有更好的结果。

在实践中,Sobel算子通过卷积框架应用于图像,分别计算x和y方向上的梯度,然后根据需要可能会结合这两个方向的梯度来得到边缘的完整表示。

dst = cv2.Sobel(src, ddepth, dx, dy, ksize)

  • ddepth:图像的深度
  • dx和dy分别表示水平和竖直方向
  • ksize是Sobel算子的大小
def cv_show(img,name):cv2.imshow(name,img)cv2.waitKey()cv2.destroyAllWindows()
img = cv2.imread('pie.png',cv2.IMREAD_GRAYSCALE)
cv2.imshow("img",img)
cv2.waitKey()
cv2.destroyAllWindows()
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
cv_show(sobelx,'sobelx')

在这里插入图片描述

sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)
sobely = cv2.convertScaleAbs(sobely)  
cv_show(sobely,'sobely')

在这里插入图片描述

sobelxy=cv2.Sobel(img,cv2.CV_64F,1,1,ksize=3)
sobelxy = cv2.convertScaleAbs(sobelxy) 
cv_show(sobelxy,'sobelxy')

在这里插入图片描述

灰度化处理
img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE)
cv_show(img,'img')

在这里插入图片描述
cv2.convertScaleAbs()函数主要作用是将梯度转换成可视化的形式。在进行Sobel边缘检测后,如果直接输出梯度结果,可能会因为数据类型的问题(比如负值)而不能正确显示。这个函数首先对输入的梯度值进行绝对值处理,然后将数据类型转换为无符号8位整型(uint8),这样就可以正常显示为图像了。这个步骤是图像处理中常用的一种方式,用来将处理后的数据转化为图像处理软件或显示设备可以接受的格式。

img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE)sobelxy=cv2.Sobel(img,cv2.CV_64F,1,1,ksize=3)
sobelxy = cv2.convertScaleAbs(sobelxy) 
cv_show(sobelxy,'sobelxy')	

在这里插入图片描述

图像梯度-Scharr算子

在这里插入图片描述

不同算子的差异

分别为sobel 、 Scharr、laplacian

#不同算子的差异
img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)
sobelx = cv2.convertScaleAbs(sobelx)   
sobely = cv2.convertScaleAbs(sobely)  
sobelxy =  cv2.addWeighted(sobelx,0.5,sobely,0.5,0)  scharrx = cv2.Scharr(img,cv2.CV_64F,1,0)
scharry = cv2.Scharr(img,cv2.CV_64F,0,1)
scharrx = cv2.convertScaleAbs(scharrx)   
scharry = cv2.convertScaleAbs(scharry)  
scharrxy =  cv2.addWeighted(scharrx,0.5,scharry,0.5,0) laplacian = cv2.Laplacian(img,cv2.CV_64F)
laplacian = cv2.convertScaleAbs(laplacian)   res = np.hstack((sobelxy,scharrxy,laplacian))
cv_show(res,'res')

在这里插入图片描述

Canny边缘检测

  1.    使用高斯滤波器,以平滑图像,滤除噪声。
    
  2.    计算图像中每个像素点的梯度强度和方向。
    
  3.    应用非极大值(Non-Maximum Suppression)抑制,以消除边缘检测带来的杂散响应。
    
  4.    应用双阈值(Double-Threshold)检测来确定真实的和潜在的边缘。
    
  5.    通过抑制孤立的弱边缘最终完成边缘检测。
    

cv2.Canny() 函数实现的是Canny边缘检测算法,这是一种非常流行且有效的图像边缘检测方法。该函数需要两个阈值作为参数,用来控制边缘检测的灵敏度。较低的阈值可以捕获更多的边缘(但可能包括一些噪声),而较高的阈值只捕获最显著的边缘。这个算法的步骤包括使用高斯滤波器去除图像噪声、计算图像的梯度强度和方向、应用非极大值抑制(NMS)来消除边缘响应的假阳性以及应用双阈值检测和边缘连接。最终,它输出一个二值图像,显示了检测到的边缘。
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

img=cv2.imread("lena.jpg",cv2.IMREAD_GRAYSCALE)v1=cv2.Canny(img,80,150)
v2=cv2.Canny(img,50,100)res = np.hstack((v1,v2))
cv_show(res,'res')

在这里插入图片描述

对车辆采用canny算子
img=cv2.imread("car.png",cv2.IMREAD_GRAYSCALE)v1=cv2.Canny(img,120,250)
v2=cv2.Canny(img,50,100)res = np.hstack((v1,v2))
cv_show(res,'res')

在这里插入图片描述

图像金字塔

在这里插入图片描述

高斯金字塔

高斯金字塔主要用于图像的多尺度表示。在计算机视觉和图像处理中,高斯金字塔通过逐步降低图像的分辨率并应用高斯滤波来生成图像的一系列缩小版本。这个过程包括两个基本操作:降采样和平滑。首先,原始图像被高斯滤波器平滑处理,然后每个方向上每隔一个像素进行采样,从而创建出更小尺寸的图像。

高斯金字塔的应用包括但不限于:

  1. 图像压缩:通过降低图像分辨率的方式减少存储空间需求。
  2. 图像融合:在进行图像拼接或HDR图像合成时,金字塔可以帮助在不同尺度上平滑地融合图像。
  3. 物体检测和识别:使用图像金字塔可以在不同的尺度上检测物体,提高检测的精度和鲁棒性。

通过这种方式,高斯金字塔能够在不同的分辨率层次上处理图像,适用于多种不同的图像处理任务。
在这里插入图片描述

img=cv2.imread("AM.png")
cv_show(img,'img')
print (img.shape)

在这里插入图片描述
上采样

up=cv2.pyrUp(img)
cv_show(up,'up')
print (up.shape)

在这里插入图片描述

下采样
down=cv2.pyrDown(img)
cv_show(down,'down')
print (down.shape)

在这里插入图片描述

继续上采样
up2=cv2.pyrUp(up)
cv_show(up2,'up2')
print (up2.shape)

在这里插入图片描述

原图与经过图像金字塔后处理的图

在这里插入图片描述

拉普拉斯金字塔

在这里插入图片描述

down=cv2.pyrDown(img)
down_up=cv2.pyrUp(down)
l_1=img-down_up
cv_show(l_1,'l_1')

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/53392.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

5.2.数据结构-c/c++二叉树详解(下篇)(算法面试题)

本章所有代码请见:5.3.数据结构-c/c二叉树代码-CSDN博客 上篇:5.数据结构-c/c二叉树详解(上篇)(遍历方法,完全二叉树)-CSDN博客 目录 1 求二叉树 第k层的节点 2 查找一个节点是否在二叉树中 3 求二叉树节点的个数 4 求二叉树…

数据结构(邓俊辉)学习笔记】排序 1——快速排序:算法A

文章目录 1. 分而治之2. 轴点3. 构造轴点4. 单调性 不变性5. 实例 1. 分而治之 主题就是排序。实际上我们对于排序问题并不陌生。你应该记得在最开始的几章,我们就分别介绍过起泡排序、插入排序、选择排序以及归并排序,而在介绍散列技术时,我…

自定义TextView实现结尾加载动画

最近做项目,仿豆包和机器人对话的时候,机器人返回数据是流式返回的,需要在文本结尾添加加载动画,于是自己实现了自定义TextView控件。 源码如下: import android.content.Context import android.graphics.Canvas imp…

基于云原生向量数据库 PieCloudVector 的 RAG 实践

近年来,人工智能生成内容(AIGC)已然成为最热门的话题之一。工业界出现了各种内容生成工具,能够跨多种模态产生多样化的内容。这些主流的模型能够取得卓越表现,归功于创新的算法、模型规模的大幅扩展,以及海…

用Boot写mybatis的增删改查

一、总览 项目结构: 图一 1、JavaBean文件 2、数据库操作 3、Java测试 4、SpringBoot启动类 5、SpringBoot数据库配置 二、配置数据库 在项目资源包中新建名为application.yml的文件,如图一。 建好文件我们就要开始写…

【MySQL00】【 杂七杂八】

文章目录 一、前言二、MySQL 文件1. 参数文件2. 日志文件3. 套接字文件4. pid 文件5. 表结构定义文件6. InnoDB 存储引擎文件 二、BTree 索引排序三、InnoDB 关键特性1. 插入缓冲1.1 Insert Buffer 和 Change Buffer1.1 缓冲合并 2. 两次写2. 自适应哈希索引3. 异步IO4. 刷新邻…

江协科技STM32学习- P9 OLED调试工具

🚀write in front🚀 🔎大家好,我是黄桃罐头,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流 🎁欢迎各位→点赞👍 收藏⭐️ 留言📝​…

# VMware 共享文件

VMware tools快速安装 VMware 提供了 open-vm-tools,这是 VMware 官方推荐的开源工具包,通常不需要手动安装 VMware Tools,因为大多数 Linux 发行版(包括 Ubuntu、CentOS 等)都包含了 open-vm-tools,并且已…

Linux网络编程IO管理

网络 IO 涉及到两个系统对象,一个是用户空间调用 IO 的进程或者线程,一个是内核空间的内核系统,比如发生 IO 操作 read 时,它会经历两个阶段: 等待内核协议栈的数据准备就绪;将内核中的数据拷贝到用户态的…

Kafka【八】如何保证消息发送的可靠性、重复性、有序性

【1】消息发送的可靠性保证 对于生产者发送的数据,我们有的时候是不关心数据是否已经发送成功的,我们只要发送就可以了。在这种场景中,消息可能会因为某些故障或问题导致丢失,我们将这种情况称之为消息不可靠。虽然消息数据可能会…

Spring框架基础介绍2.0

目录 AOP概述 面向切面思想 优点: 核心原理: 使用案例: AOP 的基本概念 springAOP 实现 AspectJ 中常用的通知 Spring事物管理 数据库事务管理? spring 事务管理? Spring中的事物管理分为两种形式: 1、编程式事物管理 2、声明…

低空经济如此火爆,新手如何分一杯羹?

低空经济的火爆为新手提供了诸多参与和分一杯羹的机会。以下是一些具体的建议,帮助新手在这一领域找到切入点: 1. 了解行业概况与趋势 定义与范围:低空经济是指在3000米以下空域内进行各种有人和无人驾驶航空器活动的经济形态,涉…

dubbo的SPI机制

一.dubbo的SPI机制 SPI机制是一个服务发现机制,通过接口的全限定名找到指定目录下对应的文件,然后加载对应的实现类注册到系统中进行使用。 在Java原生跟mysql的驱动加载也使用了这个机制,但是他们只能进行全部实现类的加载(遍历…

最新HTML5中的文件详解

第5章 HTML5中的文件 5.1选择文件 可以创建一个file类型的input,添加multiple属性为true,可以实现多个文件上传。 5.1.1 选择单个文件 1.功能描述 创建file类型input元素,页面中不再有文本框,而是 选择文件 按钮,右侧是上次文件的名称&a…

数据分析面试题:客户投保问题分析

目录 0 场景描述 1 数据准备 2 问题分析 2.1 计算小微公司的平均经营时长 2.2 计算小微公司且角色为投保人,保险起期在18年的总保费 2.3 假设,DWD_CUSTOMER_REL客户关联关系表中,存在部分客户保单数很多,部分客户保单数很少的情况,此时DWD_CUSTOMER_BASE表关联,程序…

百度智能云向量数据库创新和应用实践分享

本文整理自第 15 届中国数据库技术大会 DTCC 2024 演讲《百度智能云向量数据库创新和应用实践分享》 在 IT 行业,数据库有超过 70 年的历史了。对于快速发展的 IT 行业来说,一个超过 70 年历史的技术,感觉像恐龙一样,非常稀有和少…

Anaconda Prompt 安装paddle2.6报错

bug描述 python 3.11.9 通过 pip install paddlepaddle2.6.1 安装后,运行 paddle.utils.run_check() 则出现下面的错误: 解决办法 方法一:使用paddle 3的版本 这里要注意我的python版本 方法二:使用低版本的python python3.9…

Lombok jar包引入和用法

大家好,今天分享一个在编写代码时的快捷方法。 当我们在封装实体类时,会使用set、get等一些方法。如下图,不但费事还影响代码的美观。 那么如何才能减少代码的冗余呢,首先lib中导入lombok的jar包并添加库。 此处我已导入&#xf…

Jenkins+Svn+Vue自动化构建部署前端项目(保姆级图文教程)

目录 介绍 准备工作 配置jenkins 构建部署任务 常见问题 介绍 在平常开发前端vue项目时,我们通常需要将vue项目进行打包构建,将打包好的dist目录下的静态文件上传到服务器上,但是这种繁琐的操作是比较浪费时间的,可以使用jenkins进行自动化构建部署前端vue 准备工作 准备…

《粮食科技与经济》是什么级别的期刊?是正规期刊吗?能评职称吗?

​问题解答 问:《粮食科技与经济》是不是核心期刊? 答:不是,是知网收录的第一批认定学术期刊。 问:《粮食科技与经济》级别? 答:省级。主管单位: 湖南省粮食和物资储备局 …