网络层ip协议

一.概念

        ip协议主要是为了在复杂的网络环境中确定一个合适的路径来传输主机间的数据。简单来说就是用来确定主机的位置。

    ip协议中的一些设备如下:

  • 主机: 配有 IP 地址, 但是不进行路由控制的设备;
  • 路由器: 即配有 IP 地址, 又能进行路由控制;
  • 节点: 主机和路由器的统称;

 二.协议头格式

  • 4 位版本号(version): 指定 IP 协议的版本, 对于 IPv4 来说, 就是 4.
  • 4 位头部长度(header length): IP 头部的长度是多少个 32bit, 也就是 length 4 的字节数. 4bit 表示最大的数字是 15, 因此 IP 头部最大长度是 60 字节.
  •  8 位服务类型(Type Of Service): 3 位优先权字段(已经弃用), 4 位 TOS 字段, 和 1 位保留字段(必须置为 0). 4 位 TOS 分别表示: 最小延时, 最大吞吐量, 最高可靠性, 最小成本. 这四者相互冲突, 只能选择一个. 对于 ssh/telnet 这样的应用程序, 最小延 时比较重要; 对于 ftp 这样的程序, 最大吞吐量比较重要
  • 16 位总长度(total length): IP 数据报整体占多少个字节.
  •  8 位生存时间(Time To Live, TTL): 数据报到达目的地的最大报文跳数. 一般是 64. 每次经过一个路由, TTL -= 1, 一直减到 0 还没到达, 那么就丢弃了.要是用来防止出现路由循环。(就是数据在主机中传输转圈了)。
  • 8 位协议: 表示上层协议的类型(TCP或UDP)
  • 16 位头部校验和: 使用 CRC 进行校验, 来鉴别头部是否损坏.
  •  32 位源地址和 32 位目标地址: 表示发送端和接收端.
  • 选项字段(不定长, 最多 40 字节):

剩下的这几个和ip分片有关,后面讲。 

 

三.网段划分(重要) 

IP 地址分为两个部分, 网络号和主机号

  •  网络号: 保证相互连接的两个网段具有不同的标识;
  •  主机号: 同一网段内, 主机之间具有相同的网络号, 但是必须有不同的主机号  

        不同的子网其实就是把网络号相同的主机放到一起.如果在子网中新增一台主机, 则这台主机的网络号和这个子网的网络号一致, 但是主机号必须不能和子网中的其他主机重复 。就是说子网的网络号相同,只是子网中不同主机的主机号不同。

        那么怎么划分网络号和主机号呢?

        划分网络号和主机号的方案有多种,最常见的是CIDR(Classless Interdomain R)

  • 引入一个额外的子网掩码(subnet mask)来区分网络号和主机号;
  • 子网掩码也是一个 32 位的正整数. 通常用一串 "0" 来结尾;
  • 将 IP 地址和子网掩码进行 "按位与" 操作, 得到的结果就是网络号,剩下的就是网络号

 如下面的子网

        子网范围就代表主机号范围。

        IP 地址和子网掩码还有一种更简洁的表示方法,例如 140.252.20.68/24,表示 IP 地址为 140.252.20.68, 子网掩码的高 24 位是 1,也就是 255.255.255.0。

        这种划分方法可以充分利用ip地址。根据子网主机的数目多少来设置子网掩码,从而不浪费ip地址。

特殊的ip

  • 将 IP 地址中的主机地址全部设为 0, 就成为了网络号, 代表这个局域网;
  • 将 IP 地址中的主机地址全部设为 1, 就成为了广播地址, 用于给同一个链路中相互连接的所有主机发送数据包 
  • 127.*的 IP 地址用于本机环回(loop back)测试,通常是 127.0.0.1。就相当于自己主机发给这个ip的数据会发到主机主机上,

四.私有 IP 地址和公网 IP 地址 

IP 地址的数量限制:

        我们知道, IP 地址(IPv4)是一个 4 字节 32 位的正整数. 那么一共只有 2 的 32 次方 个 IP 地址, 大概是 43 亿左右. 而 TCP/IP 协议规定, 每个主机都需要有一个 IP 地址. 这意味着, 一共只有 43 亿台主机能接入网络么? 实际上, 由于一些特殊的 IP 地址的存在, 数量远不足 43 亿; 另外 IP 地址并非是按照主机台数来配置的, 而是每一个网卡都需要配置一个或多个 IP 地址. CIDR 在一定程度上缓解了 IP 地址不够用的问题(提高了利用率, 减少了浪费, 但是 IP 地址的绝对上限并没有增加), 仍然不是很够用. 这时候有三种方式来解决

  • 动态分配 IP 地址: 只给接入网络的设备分配 IP 地址. 因此同一个 MAC 地址的 设备, 每次接入互联网中, 得到的 IP 地址不一定是相同的;
  • NAT 技术(后面会重点介绍);
  • IPv6 并不是 IPv4 的简单升级版. 这是互不相干的两个协议, 彼此并不兼 容; IPv6 用 16 字节 128 位来表示一个 IP 地址; 但是目前 IPv6 还没有普及;

        如果一个组织内部组建局域网,IP 地址只用于局域网内的通信,而不直接连到 Internet 上, 理论上使用任意的 IP 地址都可以,但是 RFC 1918 规定了用于组建局域网的私有IP地址

  • 10.*,前 8 位是网络号,共 16,777,216 个地址
  • 172.16.*到 172.31.*,前 12 位是网络号,共 1,048,576 个地址
  • 192.168.*,前 16 位是网络号,共 65,536 个地址 包含在这个范围中的, 都成为私有 IP, 其余的则称为全局 IP(或公网 IP);         

     符合这些的都是私有ip,不参与公网的组建。

      在网络世界中,主机间的关系如下:

         

        我们的主机一般都在子网中,当我们访问公网的服务器时,由于私有ip不在公网中,不能直接访问,会将数据传输给自己子网中路由器,路由器至少有俩个ip(子网ip,WAN口ip),横跨俩个网络(相当于桥梁,沟通俩个网络),数据在路由器中层层传递, 最终传输给到横跨公网和私网的路由器最终传输给公网。

        这里有几个重点:

  •         一个路由器可以配置两个 IP 地址, 一个是 WAN 口 IP, 一个是 LAN 口 IP(子网 IP).
  •         路由器 LAN 口连接的主机, 都从属于当前这个路由器的子网中
  •         子网内的主机需要和外网进行通信时, 路由器将 IP 首部中的 IP 地址进行替换 (替换成 WAN口 IP), 这样逐级替换, 最终数据包中的 IP 地址成为一个公网 IP. 这种技术称为 NAT(Network Address Translation,网络地址转换).

        详细过程如下图:

         

        如果我们要从ip端口为192.168.1201:12345的主机访问ip和端口为127.77.241.3:80的抖音服务器,过程如下:首先用目的ip与主机IP跟ip掩码运算,计算出不在同一个网段,于是发送给路由器,路由器将收到数据的源IP端口替换成自己的WAN口ip端口,从新进行p掩码运算,计算出不在同一个网段,传给上级路由器,上级路由器重复操作,替换源ip端口,最终通过横跨公网和私网的服务器将数据传输到公网,最终访问到服务器。

        这样我们就实现了将数据传输给公网服务器。通过上述讲解,我们也能明白一个问题,为什么我们不能访问推特等外国服务器,因为我们在私网中,访问外国服务器,需要经路由器传递,路由器是国家做的,可以限制你对一些服务的访问,不将你的数据传输出去。

        这里我们有一个问题,数据是怎么回来的?其实在传输的过程中路由器会维护一张表,记录路由转换。

如客户端A和B同时向服务器发送请求,如果他们的端口号碰巧相同,都为1025,路由器会将源IP的替换为自己的,同时为A和B分配建立不同的端口,避免重复。如:

        当服务器返回消息时,对于A 的消息 源:163.221.12.9:80 目的:202.244.174.1025,对于B 源:163.221.12.9:80 目的:202.244.174.1026。这样由于端口号不同,通过分别就能找到A和B的ip和端口。从而实现消息的返回。

        在主机中为了方便进行转发,会维护一张路由表。记录下对应ip的发送ip。

        

  •  这台主机有两个网络接口,一个网络接口连到 192.168.10.0/24 网络,另一个网络 接口连到 192.168.56.0/24 网络;
  •  路由表的 Destination 是目的网络地址,Genmask 是子网掩码,Gateway 是下一 跳地址,Iface 是发送接口,Flags 中的 U 标志表示此条目有效(可以禁用某些 条目),G 标志表示此条目的下一跳地址是某个路由器的地址,没有 G 标志的条目表示目的网络地址是与本机接口直接相连的网络,不必经路由器转发; 

他会将将要发送的目的ip和路由表中的ip进行对比,从而确认下一跳(Gateway)的ip,如果没有找到对应的IP,则选择默认ip(一般是路由器)进行发送。 

五.ip的分片和组装 

        数据链路层会规定一次传输的数据最大字节数,但是ip接收到要传输的数据可能超过这个规定,因此需要进行ip的分片和组装。

        在Linux下使用ifconfig命令可以查看对应的MTU(最大传输单元(Maximum Transmission Unit,MTU))。

        那么如何进行ip 分片和组装呢?主要依赖于报头中的下列字段:

  • 16 位标识(id): 唯一的标识主机发送的报文. 如果 IP 报文在数据链路层被分片 了, 那么每一个片里面的这个 id 都是相同的.
  • 3 位标志字段: 第一位保留(保留的意思是现在不用, 但是还没想好说不定以后要 用到). 第二位置为 1 表示禁止分片, 这时候如果报文长度超过 MTU, IP 模块就会丢弃报文. 第三位表示"更多分片", 如果分片了的话, 最后一个分片置为 0, 其他是 1. 类 似于一个字符串的结束标记.
  • 13 位分片偏移(framegament offset): 是分片相对于原始 IP 报文开始处的偏移. 其实就是在表示当前分片在原报文中处在哪个位置. 实际偏移的字节数是这个值 *8 得到的. 因此, 除了最后一个报文之外, 其他报文的长度必须是 8 的整数倍(否则报文就不连续了).

        分片就一定要确保顺利组装。 16 位标识(id)可以表示特定报文的分片,3位标志位可以确定报文是不是到结尾,13位分片偏移,可以将分片按顺序组装,同时通过读取每一段的报文中的16位总长度,可以确定有没有片段丢失。需要注意的是即使一个片段丢失,所有分片都要重发。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/53394.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

传统CV算法——边缘算子与图像金字塔算法介绍

边缘算子 图像梯度算子 - Sobel Sobel算子是一种用于边缘检测的图像梯度算子,它通过计算图像亮度的空间梯度来突出显示图像中的边缘。Sobel算子主要识别图像中亮度变化快的区域,这些区域通常对应于边缘。它是通过对图像进行水平和垂直方向的差分运算来…

5.2.数据结构-c/c++二叉树详解(下篇)(算法面试题)

本章所有代码请见:5.3.数据结构-c/c二叉树代码-CSDN博客 上篇:5.数据结构-c/c二叉树详解(上篇)(遍历方法,完全二叉树)-CSDN博客 目录 1 求二叉树 第k层的节点 2 查找一个节点是否在二叉树中 3 求二叉树节点的个数 4 求二叉树…

数据结构(邓俊辉)学习笔记】排序 1——快速排序:算法A

文章目录 1. 分而治之2. 轴点3. 构造轴点4. 单调性 不变性5. 实例 1. 分而治之 主题就是排序。实际上我们对于排序问题并不陌生。你应该记得在最开始的几章,我们就分别介绍过起泡排序、插入排序、选择排序以及归并排序,而在介绍散列技术时,我…

自定义TextView实现结尾加载动画

最近做项目,仿豆包和机器人对话的时候,机器人返回数据是流式返回的,需要在文本结尾添加加载动画,于是自己实现了自定义TextView控件。 源码如下: import android.content.Context import android.graphics.Canvas imp…

基于云原生向量数据库 PieCloudVector 的 RAG 实践

近年来,人工智能生成内容(AIGC)已然成为最热门的话题之一。工业界出现了各种内容生成工具,能够跨多种模态产生多样化的内容。这些主流的模型能够取得卓越表现,归功于创新的算法、模型规模的大幅扩展,以及海…

用Boot写mybatis的增删改查

一、总览 项目结构: 图一 1、JavaBean文件 2、数据库操作 3、Java测试 4、SpringBoot启动类 5、SpringBoot数据库配置 二、配置数据库 在项目资源包中新建名为application.yml的文件,如图一。 建好文件我们就要开始写…

【MySQL00】【 杂七杂八】

文章目录 一、前言二、MySQL 文件1. 参数文件2. 日志文件3. 套接字文件4. pid 文件5. 表结构定义文件6. InnoDB 存储引擎文件 二、BTree 索引排序三、InnoDB 关键特性1. 插入缓冲1.1 Insert Buffer 和 Change Buffer1.1 缓冲合并 2. 两次写2. 自适应哈希索引3. 异步IO4. 刷新邻…

江协科技STM32学习- P9 OLED调试工具

🚀write in front🚀 🔎大家好,我是黄桃罐头,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流 🎁欢迎各位→点赞👍 收藏⭐️ 留言📝​…

# VMware 共享文件

VMware tools快速安装 VMware 提供了 open-vm-tools,这是 VMware 官方推荐的开源工具包,通常不需要手动安装 VMware Tools,因为大多数 Linux 发行版(包括 Ubuntu、CentOS 等)都包含了 open-vm-tools,并且已…

Linux网络编程IO管理

网络 IO 涉及到两个系统对象,一个是用户空间调用 IO 的进程或者线程,一个是内核空间的内核系统,比如发生 IO 操作 read 时,它会经历两个阶段: 等待内核协议栈的数据准备就绪;将内核中的数据拷贝到用户态的…

Kafka【八】如何保证消息发送的可靠性、重复性、有序性

【1】消息发送的可靠性保证 对于生产者发送的数据,我们有的时候是不关心数据是否已经发送成功的,我们只要发送就可以了。在这种场景中,消息可能会因为某些故障或问题导致丢失,我们将这种情况称之为消息不可靠。虽然消息数据可能会…

Spring框架基础介绍2.0

目录 AOP概述 面向切面思想 优点: 核心原理: 使用案例: AOP 的基本概念 springAOP 实现 AspectJ 中常用的通知 Spring事物管理 数据库事务管理? spring 事务管理? Spring中的事物管理分为两种形式: 1、编程式事物管理 2、声明…

低空经济如此火爆,新手如何分一杯羹?

低空经济的火爆为新手提供了诸多参与和分一杯羹的机会。以下是一些具体的建议,帮助新手在这一领域找到切入点: 1. 了解行业概况与趋势 定义与范围:低空经济是指在3000米以下空域内进行各种有人和无人驾驶航空器活动的经济形态,涉…

dubbo的SPI机制

一.dubbo的SPI机制 SPI机制是一个服务发现机制,通过接口的全限定名找到指定目录下对应的文件,然后加载对应的实现类注册到系统中进行使用。 在Java原生跟mysql的驱动加载也使用了这个机制,但是他们只能进行全部实现类的加载(遍历…

最新HTML5中的文件详解

第5章 HTML5中的文件 5.1选择文件 可以创建一个file类型的input,添加multiple属性为true,可以实现多个文件上传。 5.1.1 选择单个文件 1.功能描述 创建file类型input元素,页面中不再有文本框,而是 选择文件 按钮,右侧是上次文件的名称&a…

数据分析面试题:客户投保问题分析

目录 0 场景描述 1 数据准备 2 问题分析 2.1 计算小微公司的平均经营时长 2.2 计算小微公司且角色为投保人,保险起期在18年的总保费 2.3 假设,DWD_CUSTOMER_REL客户关联关系表中,存在部分客户保单数很多,部分客户保单数很少的情况,此时DWD_CUSTOMER_BASE表关联,程序…

百度智能云向量数据库创新和应用实践分享

本文整理自第 15 届中国数据库技术大会 DTCC 2024 演讲《百度智能云向量数据库创新和应用实践分享》 在 IT 行业,数据库有超过 70 年的历史了。对于快速发展的 IT 行业来说,一个超过 70 年历史的技术,感觉像恐龙一样,非常稀有和少…

Anaconda Prompt 安装paddle2.6报错

bug描述 python 3.11.9 通过 pip install paddlepaddle2.6.1 安装后,运行 paddle.utils.run_check() 则出现下面的错误: 解决办法 方法一:使用paddle 3的版本 这里要注意我的python版本 方法二:使用低版本的python python3.9…

Lombok jar包引入和用法

大家好,今天分享一个在编写代码时的快捷方法。 当我们在封装实体类时,会使用set、get等一些方法。如下图,不但费事还影响代码的美观。 那么如何才能减少代码的冗余呢,首先lib中导入lombok的jar包并添加库。 此处我已导入&#xf…

Jenkins+Svn+Vue自动化构建部署前端项目(保姆级图文教程)

目录 介绍 准备工作 配置jenkins 构建部署任务 常见问题 介绍 在平常开发前端vue项目时,我们通常需要将vue项目进行打包构建,将打包好的dist目录下的静态文件上传到服务器上,但是这种繁琐的操作是比较浪费时间的,可以使用jenkins进行自动化构建部署前端vue 准备工作 准备…