大模型训练的艺术:从预训练到增强学习的四阶段之旅

文章目录

  • 大模型训练的艺术:从预训练到增强学习的四阶段之旅
    • 1. 预训练阶段(Pretraining)
    • 2. 监督微调阶段(Supervised Finetuning, SFT)
    • 3. 奖励模型训练阶段(Reward Modeling)
    • 4. 增强学习微调阶段(Reinforcement Learning, RL)

大模型训练的艺术:从预训练到增强学习的四阶段之旅

在这里插入图片描述

在当今人工智能领域,大型模型以其卓越的性能和广泛的应用前景,成为推动技术进步的重要力量。训练这样复杂的模型并非一日之功,而是需历经精心设计的四个阶段:预训练、监督微调(SFT)、奖励模型训练、以及增强学习微调(RL)。本文将深入探索这四大阶段,揭示每一步骤背后的技术逻辑和实施细节。

1. 预训练阶段(Pretraining)

核心目标: 构建一个对广泛数据具有普遍理解的基础模型。预训练阶段通过让模型在大规模未标注数据集上学习,来捕获语言、图像或其他类型数据的统计规律和潜在结构。这一步骤通常使用自监督学习策略,如掩码语言模型(如BERT)或对比学习(如SimCLR)。

实施细节: 模型会尝试预测被遮盖的部分或在图像中找出相似性,从而在无监督环境下学习数据的内在特征。此阶段需要大量计算资源,并且模型规模往往非常庞大,以便能更好地泛化至各种任务。

应用场景: 预训练模型如BERT、RoBERTa在自然语言处理领域被广泛应用,为后续的微调和具体任务适应奠定了坚实的基础。
在这里插入图片描述

2. 监督微调阶段(Supervised Finetuning, SFT)

核心目标: 将预训练得到的通用模型适应特定任务。通过在特定领域的带标签数据集上进行微调,模型学习特定任务的输出模式,比如情感分析、命名实体识别或图像分类。

实施细节: 在预训练模型的基础上,添加额外的输出层并使用监督学习策略,调整模型参数以最小化预测错误。这一阶段的训练数据相对较少,但针对性极强,使模型在特定任务上表现更佳。

应用场景: 例如,针对医疗记录的情感分析,会在预训练的语言模型基础上,使用标注了情感的医疗文本进行微调。
在这里插入图片描述

3. 奖励模型训练阶段(Reward Modeling)

核心目标: 为模型的行为制定评价标准。在某些复杂或开放式的任务中,简单的正确/错误标签不足以指导模型学习。奖励模型通过给模型的输出分配分数(奖励),引导其产生更高质量的输出。

实施细节: 通过人工或自动化方法,为模型的不同行为或生成内容分配奖励分数,建立奖励模型。这要求设计合理的奖励函数,确保模型追求的目标与实际任务目标一致。

应用场景: 在生成对话系统中,奖励模型可以用来评价对话的连贯性、信息丰富度和用户满意度,促使模型产生更加自然和有用的回复。
在这里插入图片描述

4. 增强学习微调阶段(Reinforcement Learning, RL)

核心目标: 通过与环境的互动,优化模型的决策策略。增强学习阶段利用奖励信号,使模型在特定环境中通过试错学习,不断优化其行为策略,以最大化长期奖励。

实施细节: 模型在环境中采取行动,根据奖励模型给出的反馈调整策略。这通常涉及策略梯度方法等技术,模型通过多次迭代逐渐学会如何做出最优选择。

应用场景: 在游戏AI、自动机器人导航等场景,增强学习能让模型在动态环境中自主学习最佳策略,实现高效解决问题的能力。
在这里插入图片描述

结语

这四个阶段构成了一个系统化的训练流程,从广泛而基础的预训练,到针对任务的精炼微调,再到高级的策略优化,每一步都是为了让模型更加智能、高效地服务于特定应用场景。随着技术的不断演进,这一流程也在持续优化,推动着大模型向更广泛、更深层次的应用领域迈进。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/25793.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2- 简易版-日记写作软件(java)-涉及的技术点简述

环境: Ubuntu LinuxJDK1.8Eclipse 项目文件结构: 0. 涉及的技术点 1)view 包(GUI): Eclipse SwingEclipse WindowBuilderJFileChooser(用于弹出文件选择对话框,进行文件或目录的选择)FileNameExtension…

【SQLAlChemy】filter过滤条件如何使用?

filter 过滤条件 生成 mock 数据 # 创建 session 对象 session sessionmaker(bindengine)()# 本地生成mock数据 for i in range(6):# 生成随机名字, 长度为4到7个字符name .join(random.choice(string.ascii_letters) for _ in range(random.randint(4, 7)))# 生成随机年龄…

Java 请求头加header

Java 请求头加header 通常情况下,java的http请求接口可以无需加header,但也有的第三方接口强制要求将accesstoken放在请求头中,而不能作为普通参数传递,这样就需要在请求头中加header,这里写了几个http请求工具类的方法…

矩阵杯2024 Re wp 前两题

1. packpy UPX壳,但不能直接脱,应该是修改了头文件(l_info) 改一下就能脱了 脱完是个elf文件 进IDA看一眼 明显的Py打包标志,用pyinstxtractor解包出来(最好用对应的python3.8) 可以得到packpy.pyc文件&a…

Prov-GigaPath:新型数字病理基础模型|顶刊精析·2024-06-10

小罗碎碎念 顶刊精析|2024-06-10 首先祝各位老师、师兄师姐、师弟师妹们端午节快乐!!小罗是社恐,所以就不一一发消息问候了,哈哈。 今天这篇推文是昨天下午写完的,想着时间有点晚了,所以就放到…

java发送http请求工具类-简单易懂

简介 在Java开发中,我们经常需要发送HTTP请求来获取数据或与外部系统进行交互。Hutool是一个Java工具类库,提供了丰富的工具方法,其中包括发送HTTP请求的工具类。使用Hutool发送HTTP请求非常简单,不仅可以发送GET和POST请求&#…

作业07 递推算法2

作业&#xff1a; #include <iostream> using namespace std; int main(){int a[110][110]{0},b[110][110]{0},n;cin>>n;for(int i1;i<n;i){for(int j1;j<i;j){cin>>a[i][j];}}for(int in-1;i>1;i--){for(int j1;j<i;j){a[i][j]a[i][j]max(a[i1]…

SpringBoot中实现一个通用Excel导出功能

SpringBoot中实现一个通用Excel导出功能 文章目录 SpringBoot中实现一个通用Excel导出功能这个导出功能的特色看效果代码解析1、依赖2、Excel 入参(ExcelExportRequest)3、Excel 出参(ExcelExportResponse)4、ExcelExportField5、ExcelExportUtils 工具类6、ExcelHead 头部…

0元白嫖阿里云4G内存云服务器——感谢伟大的CSDN和阿里云

&#x1f9f8;欢迎来到dream_ready的博客&#xff0c;&#x1f4dc;相信您对博主首页也很感兴趣o (ˉ▽ˉ&#xff1b;) 学生邮箱白嫖/免费安装JetBrains全家桶(IDEA/pycharm等) —— 保姆级教程-CSDN博客 目录 1、学生认证领取300元优惠券 ​2、购买云服务器 1、学生认证领取…

深度学习500问——Chapter10:迁移学习(1)

文章目录 11.1 迁移学习基础知识 11.1.1 什么是迁移学习 11.1.2 为什么需要迁移学习 11.1.3 迁移学习的基本问题有哪些 11.1.4 迁移学习有哪些常用概念 11.1.5 迁移学习与传统机器学习有什么区别 11.1.6 迁移学习的核心及度量准则 11.1.7 迁移学习与其他概念的区别 11.1.8 什么…

【Python】高阶函数

高阶函数 高阶函数是接受另一个函数作为参数&#xff0c;并返回一个函数作为结果的函数。 这种类型的函数是函数式编程的核心&#xff0c;因为它们允许对行为进行抽象和复用&#xff0c;使得代码更加简洁和灵活。 def apply_function(func, value):return func(value)def sq…

MySQL 存储函数及调用

1.mysql 存储函数及调用 在MySQL中&#xff0c;存储函数&#xff08;Stored Function&#xff09;是一种在数据库中定义的特殊类型的函数&#xff0c;它可以从一个或多个参数返回一个值。存储函数在数据库层面上封装了复杂的SQL逻辑&#xff0c;使得在应用程序中调用时更加简单…

tcp协议中机制的总结

目录 总结 分析 三次握手 总结 分析 其中,序列号不止用来排序,还可以用在重传时去重 确认应答是机制中的核心 因为都需要依靠应答来拿到协议字段,从而判断是否触发机制 保证可靠性的策略也可以提高效率,比如: 流量控制,可以根据多个因素来动态调整数据发送量拥塞控制也是,让…

揭开FFT时域加窗的奥秘

FFT – Spectral Leakage 假设用于ADC输出数据分析的采样点数为N&#xff0c;而采样率为Fs&#xff0c;那我们就知道&#xff0c;这种情况下的FFT频谱分辨率为δf&#xff0c;那么δfFs/N。如果此时我们给ADC输入一个待测量的单频Fin&#xff0c;如果此时Fin除以δf不是整数&a…

Follow Carl To Grow|【LeetCode】235. 二叉搜索树的最近公共祖先,701.二叉搜索树中的插入操作,450.删除二叉搜索树中的节点

【LeetCode】235. 二叉搜索树的最近公共祖先 题意&#xff1a;给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为&#xff1a;“对于有根树 T 的两个结点 p、q&#xff0c;最近公共祖先表示为一个结点 x&#xff0c;满足 x 是 p、q…

翻译《The Old New Thing》- Why do messages posted by PostThreadMessage disappear?

Why do messages posted by PostThreadMessage disappear? - The Old New Thing (microsoft.com)https://devblogs.microsoft.com/oldnewthing/20090930-00/?p16553 Raymond Chen 2008年09月30日 为什么 PostThreadMessage 发布的信息会消失&#xff1f; 在显示用户界面的线…

mybatis-plus 多租户方案1使用和坑注意事项,方案是需要实现租户功能的表都增加租户id字段

1 前提springboot整合好 mybatis-plus (版本3.5.4) 需要实现多租户的表&#xff0c;添加修改对应字段和 pojo类 (表添加tenant_id字段&#xff0c;pojo添加tenantId属性) 2 配置文件更改&#xff0c;方便扩展 #多租户配置 tenant:enable: truecolumn: tenant_idignoreTable…

【Java】网制焦,实也难,0基础,学反射

【Java】网制焦&#xff0c;实也难&#xff0c;0基础&#xff0c;学反射 文章目录 【Java】网制焦&#xff0c;实也难&#xff0c;0基础&#xff0c;学反射反射的概述 获取Class对象的三种方式通过对象的getClass()方法通过类的静态属性class通过Class.forName()方法 通过反射获…

代码随想录算法训练营第三十三天|LeetCode1005 k次取反后最大化的数组和、LeetCode134 加油站

题1&#xff1a; 指路&#xff1a;1005. K 次取反后最大化的数组和 - 力扣&#xff08;LeetCode&#xff09; 思路与代码&#xff1a; 题意清晰&#xff0c;需要注意的是需要把k次机会用完。数组中的数分为三种情况&#xff1a;正数&#xff0c;负数&#xff0c;0。要求数组…

《平凡的世界》读后感:走进平凡的世界

《平凡的世界》是一部充满人性光辉的小说&#xff0c;通过描写普通人的生活&#xff0c;展现了人生的苦乐交织。这篇读后感旨在通过秀、少平、金秀、兰香、秀莲、少安、孙玉厚、孙玉亭、顾养民、润生、润叶、向前、登云、晓霞、田福堂、田福军、张有智、苗凯、王满银、兰花等人…