揭开FFT时域加窗的奥秘

FFT – Spectral Leakage

假设用于ADC输出数据分析的采样点数为N,而采样率为Fs,那我们就知道,这种情况下的FFT频谱分辨率为δf,那么δf=Fs/N。如果此时我们给ADC输入一个待测量的单频Fin,如果此时Fin除以δf不是整数,就会产生频率泄露。要尽可能保证测得的FFT不会产生频谱泄露,有两种方式进行处理,相干采样和时域加窗

(1)相干采样

假设M是我们需要采样的输入信号的周期数,那么M/Fin=N/Fs,也就是两个时间长度是一致的,也就是Fin/ Fs=M/N,这个比值要能够被表达成为有理数(也就是整数或者分数)N必须是2的幂数(这是从蝶形运算的角度考虑的)。MN还必须要互为质数(这样可以避免重复采样相同位置的,重复采样周期信号相同的位置点不会获得额外的信息,因此不推荐M非素数(素数,除了1和它本身以外不再有其他因数的自然数))。如果选择了M/N为非互质时,将导致信号周期性的量化,以及仅有少量的量化步进被测试。量化周期性的重复,建立了一个线谱,它是一个令人费解的实频率线(如下图2所示在谐波镜像之下的红线,这是由ADC的非线性导致的,而黑色痕迹则是因为量化周期的重复性导致的,也就是M/N为非互质导致的,图3是采用相干采样得到的结果

从相干采样的描述来看,相干采样的输入信号Fin和采样频率Fs必须是同步信号。另外相干采样可以确保信号功率仅在一个FFT bin(也就是频谱分辨率)之中。

图1 想干采样定理:
在这里插入图片描述

图2 重复相同位置采样导致的谐波痕线抬升:在这里插入图片描述

图3 相干采样改善还原了真实的非线性特性:
在这里插入图片描述

(2)时域加窗

如果采样的波形是非连续的,也就是采集的样本不是信号的整数倍周期,那么就需要消除这种现象,从而减小FFT的频谱泄露(注意不是完全改善),TI的官方文档为我们展示了这一现象,如下图3所示,对信号进行了时域加窗,加窗之后频谱泄露有所减小

图4 非周期采样频谱泄露展示:
在这里插入图片描述

很明显No window(矩形窗)的旁瓣非常高,也就意味着,它的泄露抑制的不是很好。但是频率分辨率准确,幅值精度低。

  • 不同的窗函数对信号频谱的影响是不一样的,这主要是因为不同的窗函数,产生泄漏的大小不一样,频率分辨能力也不一样。信号的截短产生了能量泄漏,而用 FFT 算法计算频谱又产生了栅栏效应,从原理上讲这两种误差都是不能消除的,但是我们可以通过选择不同的窗函数对它们的影响进行抑制。(矩形窗 主瓣窄,旁瓣大,频率识别精度最高,幅值识别精度最低;布莱克曼窗主瓣宽,旁瓣小,频率识别精度 最低,但幅值识别精度最高)
  • Hanning(汉宁窗)是使用最广泛的一种窗函数,除此之外还有,Hamming(海明窗),Flat-top 窗和 Balckman-Harris 窗,矩形窗产生最窄的谱线,加 Flat-top 窗谱线最宽。旁瓣的影响和精确频率分辨率 有时候是不可兼得的。(矩形窗主瓣窄,旁瓣大,频率识别精度最高,幅值识别精度最低;Flat-top 窗主瓣 宽,旁瓣小,频率识别精度最低,但幅值识别精度最高)

图5 TI官方的不同窗函数的频谱特性:
在这里插入图片描述

图6 不同应用使用的窗函数:
在这里插入图片描述

  • Processing loss(dB),也叫做相干功率增益,对一个信号进行加窗操作之后将会减少信号在时域上的幅值,尤其是在窗函数的左右边界,这种幅度的减小会引入幅度误差,每个窗函数的这种处理损失不太一样,TI已经列于下表之中,矩形窗不存在损失

  • Scalloping loss(dB),由于FFT变换的结果是离散的,那么信号的频率有可能会落在两个FFT bin之间,这样原本的功率就会被分散到两个bin上,从而相对于原先的功率就会产生损失,这就叫做栅栏损失

在这里插入图片描述
在这里插入图片描述

图7 不同窗函数使用的处理误差:
在这里插入图片描述

图8 不同窗函数的形状:
在这里插入图片描述

TIADC分析软件,内部已经对加窗处理损失进行修正。

大家可自行使用FFT分析软件分析一下非整周期采样使用各种窗口的结果,加深理解Highest side lobe level、Processing loss、Scalloping loss以及Half main lobe width。应用时域加窗技术会影响频谱分辨率

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/25779.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Follow Carl To Grow|【LeetCode】235. 二叉搜索树的最近公共祖先,701.二叉搜索树中的插入操作,450.删除二叉搜索树中的节点

【LeetCode】235. 二叉搜索树的最近公共祖先 题意:给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q…

翻译《The Old New Thing》- Why do messages posted by PostThreadMessage disappear?

Why do messages posted by PostThreadMessage disappear? - The Old New Thing (microsoft.com)https://devblogs.microsoft.com/oldnewthing/20090930-00/?p16553 Raymond Chen 2008年09月30日 为什么 PostThreadMessage 发布的信息会消失? 在显示用户界面的线…

mybatis-plus 多租户方案1使用和坑注意事项,方案是需要实现租户功能的表都增加租户id字段

1 前提springboot整合好 mybatis-plus (版本3.5.4) 需要实现多租户的表,添加修改对应字段和 pojo类 (表添加tenant_id字段,pojo添加tenantId属性) 2 配置文件更改,方便扩展 #多租户配置 tenant:enable: truecolumn: tenant_idignoreTable…

【Java】网制焦,实也难,0基础,学反射

【Java】网制焦,实也难,0基础,学反射 文章目录 【Java】网制焦,实也难,0基础,学反射反射的概述 获取Class对象的三种方式通过对象的getClass()方法通过类的静态属性class通过Class.forName()方法 通过反射获…

代码随想录算法训练营第三十三天|LeetCode1005 k次取反后最大化的数组和、LeetCode134 加油站

题1: 指路:1005. K 次取反后最大化的数组和 - 力扣(LeetCode) 思路与代码: 题意清晰,需要注意的是需要把k次机会用完。数组中的数分为三种情况:正数,负数,0。要求数组…

《平凡的世界》读后感:走进平凡的世界

《平凡的世界》是一部充满人性光辉的小说,通过描写普通人的生活,展现了人生的苦乐交织。这篇读后感旨在通过秀、少平、金秀、兰香、秀莲、少安、孙玉厚、孙玉亭、顾养民、润生、润叶、向前、登云、晓霞、田福堂、田福军、张有智、苗凯、王满银、兰花等人…

算法 | 子集数排列树满m叉树二分搜索归并排序快速排序

子集树:O(2^n) 一个序列的所有子集为2^n,即可看成具有2^n个叶节点的满二叉树 int backtrack(int k) //k表示扩展结点在解空间树中所处的层次 {if(k>n) //n标识问题的规模output(x); //x是存放当前解的一维数组if(constraint(k)…

01—Linux网络设置

1.1查看及测试网络 1.1.1 查看网络配置 1.查看网络接口地址 主机的网络接口卡通常称为网络接口。在LInux操作系统中,使用ifconfig命令可以查看网络接口的地址配置信息。 (1)查看活动的网络接口设备 若采用mini版CenOS7安装的系统&#x…

新技术前沿-2023-大模型学习根据个人数据集微调一个Transformer模型

参考如何根据自己的数据集微调一个 Transformer 模型 我们将通过NLP中最常见的文本分类任务来学习如何在自己的数据集上利用迁移学习(transfer learning)微调一个预训练的Transformer模型——DistilBERT。DistilBERT是BERT的一个衍生版本,它的优点在它的性能与BERT相…

Vue14-监视属性

一、天气案例 1-1、方式一:{{三目运算符}} 1-2、方式二:计算属性 1-3、方式三:click中写简单逻辑 click里面可以写简单的逻辑语句。不用this 解决方式: 小结: 绑定事件的时候,xxx"yyy" xxx&…

C语言学习系列:GCC编译器Windows版本MinGW-w64的安装教程

本文图文分享如何安装C语言编译器——MinGW-w64。 只要看到这篇文章,就可以按照文中步骤正确安装MinGW-w64并使用。 一、什么是 MinGW-w64 ? 我们知道C语言是高级语言,必须编译为二进制文件,才能为计算机运行,MinGW…

Web前端Canvas教程:绘制图形、动画与交互的奇妙世界

Web前端Canvas教程:绘制图形、动画与交互的奇妙世界 在Web前端技术中,Canvas无疑是一个强大的工具,它允许开发者在网页上绘制复杂的图形、创建生动的动画,并实现丰富的交互效果。本文将带领你走进Canvas的奇妙世界,从…

理解我的积木编程思想

1 学习教程,至少7139手册2 编程实践,遇到实际问题后,在技术资料中查找关键词3 选择适合的条目找到代 码。修正,组合。

[发布]嵌入式系统远程测控软件-基于Qt

目录 一. 引言二. 软件功能2.1 原理2.2 软件功能2.3 运行环境 三. 软件操作使用3.1 软件界面3.2 软件功能使用详解3.2.1 连接3.2.2 数据监测3.2.3 数据修改3.2.4 数据保存 3.3 软件的硬件连接 四. 通信协议——STM32移植篇4.1 通信协议4.2 STM32如何传输浮点数4.3 简单移植&…

shell编程(三)—— 控制语句

程序的运行除了顺序运行外,还可以通过控制语句来改变执行顺序。本文介绍bash的控制语句用法。 一、条件语句 Bash 中的条件语句让我们可以决定一个操作是否被执行。结果取决于一个包在[[ ]]里的表达式。 bash中的检测命令由[[]]包起来,用于检测一个条…

第一次视频学习

1、了解AI答题应用 1.1 业务流程架构图 1.2 自定义上传题目流程 1.3 时序图 这个比较困难,第一次了解到流式,便于前端与用户交互

千益畅行,引领旅游新潮流,共享经济下的创新旅游模式

在当前旅游行业中,千益畅行作为一种新型的旅游模式,正逐渐受到市场的关注和认可。它不仅为旅行社带来了新的客流,还巧妙地规避了高额的广告费用,实现了资源配置的优化和营销成本的大幅节约。 面对旅游经济的下滑,许多…

【微服务】springcloud-alibaba 配置多环境管理使用详解

目录 一、前言 二、配置多环境问题概述 2.1 什么是微服务多环境配置管理 2.1.1 微服务多环境配置管理问题起源 2.2 为什么要做多环境配置管理 2.3 微服务多环境配置管理解决方案 三、springboot 配置多环境管理解决方案 3.1 前置准备 3.1.1 搭建一个springboot工程 3.…

【PowerDesigner】创建和管理CDM之使用实体间关系

目录 🌊1. PowerDesigner简介 🌍1.1 常用模型文件 🌍1.2 PowerDesigner使用环境 🌊2. 创建和管理CDM 🌍​​​​​​2.1 新建CDM 🌍2.2 使用实体间关系 🌌a. 使用联系 🌌b. …

C#面:PDB是什么东西? 在调试中它应该放在哪里

C# PDB(Program Database)是一种用于存储调试信息的文件格式。它包含了源代码文件、符号表和其他调试相关的信息,可以帮助开发人员在调试过程中定位和解决问题 在调试中,PDB文件应该与编译生成的可执行文件(如DLL或EX…