【Java面试】十二、Kafka相关

文章目录

  • 1、Kafka如何保证消息不丢失
    • 1.1 生产者发消息到Brocker丢失:设置异步发送
    • 1.2 消息在Broker存储时丢失:发送确认机制
    • 1.3 消费者从Brocker接收消息丢失
    • 1.4 同步 + 异步组合提交偏移量
  • 2、Kafka如何保证消费的顺序性
  • 3、Kafka高可用机制
    • 3.1 集群模式
    • 3.2 分区备份机制
  • 4、Kafka数据清理机制
    • 4.1 数据存储
    • 4.2 数据清理
  • 5、Kafka实现高性能的设计
    • 5.1 零拷贝
  • 6、面试

1、Kafka如何保证消息不丢失

broker:经纪人
在这里插入图片描述
和RabbitMQ类似的分析,Kafka丢数据的可能点有:

  • 生产者发消息到Brocker的过程丢消息
  • 消息存Broker时丢了
  • 消费者从Broker接收消息后丢了

1.1 生产者发消息到Brocker丢失:设置异步发送

异步发送,传入回调逻辑,回调逻辑中,判断发送有异常时,记录日志并重试:

在这里插入图片描述

配置中设置重试次数:

在这里插入图片描述

1.2 消息在Broker存储时丢失:发送确认机制

生产者发送消息到leader,leader需要把数据同步到follower

在这里插入图片描述

发送确认机制,即返给生产者producer一个acks,当设置acks = :

  • 0:producer不等Kafka的回复,消息一扔就走。因此消息发的快,但可能丢消息
  • 1:leader收到消息后,给producer一个成功的响应,告诉它消息发送成功
  • all:leader、follower都收到消息后,才给producer一个成功的响应

在这里插入图片描述

1.3 消费者从Brocker接收消息丢失

Kafka的分区机制,即一个Topic被划分成多个分区,如图,Topic1被分为P1、P2、P3、P4,且这四个分区,又在两个不同的Broker。

现有一个消费者组,里面有三个实例consume1、consume2、consume3,负责处理topic1 的消息。topic分区的消息,只能由消费者组的唯一一个消费者处理,因此,不同的分区分给了不同的消费者,如图,consume1负责P1、P2,consume2负责P3,consume3负责P4分区。

在这里插入图片描述

每个分区里,都是按照偏移量存储数据、消费数据(分区中的每条消息,都分配了一个序号,即偏移量,从0开始自增)。消费者默认每5秒自动提交一次已经消费的偏移量,即自己处理到哪个位置了
在这里插入图片描述

如上,某个消费组的实例consumer1处理P1、P2,实例consumer处理P3。假设consumer2宕机,其负责的分区分给组里的其他实例去处理,如交给了consumer1

在这里插入图片描述

此时:

  • 如果consume2消费到了偏移量3,提交的偏移量也是3,则consumer1接手后,没任何问题
  • 如果consume2消费到了偏移量6,但提交的偏移量只到3(还没来得及提交),则consumer1接手后,会导致3~6偏移量的数据重复消费
  • 如果consume2消费到了偏移量1,但提交的偏移量到了3(消息拿走了,但还没来得及处理),则consumer1接手后,会导致1~3的消息丢失

1.4 同步 + 异步组合提交偏移量

解决这个问题,可禁用自动提交偏移量,改为手动提交:

  • 同步提交:会导致消费者在提交偏移量后阻塞,直到提交成功或失败,但偏移量准确(看重可靠性)
  • 异步提交:允许消费者继续处理其他消息,而不必等待偏移量提交的确认,但偏移量可能提交失败(看重吞吐量)
  • 同步 + 异步组合使用

组合使用,处理消息时使用异步提交,而在消费完后提交出现异常时(consumer.commitAsync方法异常),使用同步提交来确保最后一批消息的偏移量被正确提交。如此,可以在保证效率的同时,尽可能地保证偏移量的正确性

在这里插入图片描述
这样写,提交偏移量可控了,但如果消费完一条消息后,还没异步提交就断电,还是会有重复消费问题。finally里写个同步提交,可以解决异步提交时,偏移量可能提交失败(有异常)的问题,但解决不了瞬间断电宕机的问题。

再回头看瞬间断电宕机一个consumer,导致的重复消费和消息丢失问题。这么写代码,重复消费的问题还在,因此,还是要考虑幂等方案,如消费时,先判断业务ID是否存在,是则return

但消息丢失的问题就没有了,因为现在是手动提交偏移量,不存在:消息拿走了,但还没来得及处理,偏移量就被提交了(然后宕机)的情况。现在的代码是,先处理,再提交。因此,如果最坏也就是消息被处理了,但没提交偏移量,后面的consumer接手后,还是属于重复消费问题。

2、Kafka如何保证消费的顺序性

需要顺序性的场景如:聊天,A发消息的顺序 == B收消息的顺序。Kafka,一个Topic可能有多个分区,每个分区内,是有顺序的,但整个Topic的所有分区里,无顺序。因此,要顺序,可只提供一个分区。或者说,同一个业务的数据,放同一个分区。
在这里插入图片描述
以上两种写法都可,第一种写法指定分区,第二种写法用key,key被hash后,分到不同的区,因此,同一个业务,用相同的key即可。

3、Kafka高可用机制

3.1 集群模式

每一个broker,就是一个Kafka实例。 多个broker实例,组成集群。挂掉一个,其余的也能处理请求。

在这里插入图片描述

3.2 分区备份机制

一个topic有多个分区,每个分区有多个副本,其中一个是leader,另一个是follower,且follower存储在集群的其他broker实例中。如下图,topic1的分区P0,其leader在broker1,两个follower在broker1和broker2。当leader故障,Kafka会将一个follower提升为leader,且ISR的follower优先被提升。

在这里插入图片描述

ISR,即in-sync-relica,是同步复制的follower,数据更加完整,但效率不高。普通的follower,即异步复制的,不保证完整性,但性能好。
在这里插入图片描述
最后,关于ISR副本数的控制:

在这里插入图片描述

4、Kafka数据清理机制

4.1 数据存储

在这里插入图片描述

topic是一个逻辑概念,数据在磁盘,按照topic分区存,一个分区对应一个文件夹,如下图:

在这里插入图片描述
分区内部,存储了数据,且是分段存储,segment,每一段,对应三个文件,.index索引文件、.log真正的数据文件、.timeindex时间索引文件。采取分段,而不是将所有数据都放到一个文件,是因为分段后:

  • 删除已被消费的无用分段文件更方便
  • 查找数据更便捷(文件名是以偏移量命名的)

都放一个文件,不分段,则不管是删除还是查找都很烦。

4.2 数据清理

清理策略1:消息保存时间超过了指定时间,默认168h即7天。

在这里插入图片描述

清理策略2:当topic所有分区的文件总和,所占的文件大小超过配置的阈值,开始删除最久的消息。需手动开启。

在这里插入图片描述

5、Kafka实现高性能的设计

  • 消息分区:一个topic分成多个part,在不同的broker节点上。不再受单台服务器的限制,可以不受限的处理更多的数据
  • 顺序读写:磁盘顺序读写,而不是随机磁盘寻道,提升读写效率
  • 页缓存:把磁盘中的数据缓存到内存中,把对磁盘的访问变为对内存的访问。第二次读相同数据时,直接走页缓存,写时,先写到页缓存,再刷回磁盘。

在这里插入图片描述

  • 零拷贝:减少上下文切换及数据拷贝
  • 消息压缩:Kafka提供了多种数据压缩算法,东西变小了,从而减少磁盘IO和网络IO,但同时压缩也会额外损耗CPU资源
  • 分批发送:将多个消息打包批量发送,减少网络开销,默认16KB一发,如果指定时间内,不到16KB,也会发,以防消息积压

5.1 零拷贝

现在有一个producer需要发送消息,过程为:从用户空间(权限小,无法直接调用硬件资源磁盘)拷贝到内核空间的页缓存,到一定批次后,将数据写进磁盘。

在这里插入图片描述

再来一个consumer消费消息,过程为:用户空间的Kafka先在页缓存找有没这个消息,没找到则去磁盘,并拷贝到内核空间的页缓存,再拷贝到用户空间。想要把消息发送给消费者,就要用到socket连接和网卡,因此接下来是,数据从用户空间拷贝到内核空间的Socket缓冲区,再拷贝到网卡,然后发出去,经历了4次拷贝

在这里插入图片描述

而Kafka的零拷贝,即磁盘 copy到 页缓存,页缓存直接copy到网卡,只要两次拷贝。Kafka知道哪个消费者要消费消息,因此,把整个操作委托给系统,不再经过用户空间。

在这里插入图片描述

6、面试

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/24778.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深度搜索算法2(c++)

红与黑 题目描述 有一间长方形的房子,地上铺了红色、黑色两种颜色的正方形瓷砖。你站在其中一块黑色的瓷砖上,只能向相邻的黑 色瓷砖移动。请写一个程序,计算你总共能够到达多少块黑色的瓷砖。 输入 包括多组数据。每组数据的第一行是两个…

Vue.js ECharts使用

一、介绍 ECharts 是一个使用 JavaScript 实现的开源可视化库,涵盖各行业图表,满足各种需求。ECharts 提供了丰富的图表类型和交互能力,使用户能够通过简单的配置生成各种各样的图表,包括但不限于折线图、柱状图、散点图、饼图、雷…

02Linux文件,目录,过滤,管道常用命令

Linux基础概述 Linux基础目录 Linux没有盘符这个概念, 只有一个顶级根目录 /, 所有文件都在它下面 在Windows系统中路径之间的层级关系使用/来表示在Linux系统中路径之间的层级关系使用/来表示,出现在开头的/表示根目录, /home/a.txt表示根目录下的home文件夹内有a.txt文件 …

微服务开发与实战Day03

一、导入黑马商城项目 资料文档:Docs 1. 安装MySQL ①删除root目录下的mysql rm -rf mysql/ ②把课前资料里的mysql目录上传到root目录下 ③创建一个通用网络 docker network create hm-net ④使用下面的命令安装MySQL docker run -d \--name mysql \-p 330…

C++ OpenCV 图像分类魔法:探索神奇的模型与代码

⭐️我叫忆_恒心,一名喜欢书写博客的研究生👨‍🎓。 如果觉得本文能帮到您,麻烦点个赞👍呗! 近期会不断在专栏里进行更新讲解博客~~~ 有什么问题的小伙伴 欢迎留言提问欧,喜欢的小伙伴给个三连支…

TensorFlow2.x基础与mnist手写数字识别示例

文章目录 Github官网文档Playground安装声明张量常量变量 张量计算张量数据类型转换张量数据维度转换ReLU 函数Softmax 函数卷积神经网络训练模型测试模型数据集保存目录显示每层网络的结果 TensorFlow 是一个开源的深度学习框架,由 Google Brain 团队开发和维护。它…

IP纯净度是什么,对用户有多么重要?

在网络应用和数据采集等领域,代理IP被广泛使用,而代理IP的纯净度则直接影响其性能和可用性。代理IP的纯净度主要涉及到代理IP在网络传输过程中的稳定性、匿名性和安全性。今天就带大家一起了解代理IP纯净度对用户的重要性。 第一,保护用户的隐…

Android Ble低功耗蓝牙开发

一、新建项目 在Android Studio中新建一个项目,如下图所示: 选择No Activity,然后点击Next 点击Finish,完成项目创建。 1、配置build.gradle 在android{}闭包中添加viewBinding,用于获取控件 buildFeatures {viewB…

Flutter基础 -- Flutter容器布局

目录 1. MaterialApp 1.1 组件定义 1.2 主要功能和属性 1.3 示例 2. 脚手架 Scaffold 2.1 定义 2.2 Scaffold 的属性 2.3 示例 PS: 对于 Scaffold 和 MaterialApp 3. 线性布局 Column Row 3.1 Row 3.2 Column 4. 盒模型 Box Model 4.1 定义 4.2 示例 5. 容器 C…

数据结构及研究

**数据结构是计算机存储、组织数据的方式,它是相互之间存在一种或多种特定关系的数据元素的集合**Θic-1ΘΘic-2ΘΘic-3ΘΘic-4ΘΘic-5Θ。 数据结构这一概念在计算机科学领域扮演着至关重要的角色,它不仅决定了数据在计算机内部的存储方式&#xf…

Block Transformer:通过全局到局部的语言建模加速LLM推理

在基于transformer的自回归语言模型(LMs)中,生成令牌的成本很高,这是因为自注意力机制需要关注所有之前的令牌,通常通过在自回归解码过程中缓存所有令牌的键值(KV)状态来解决这个问题。但是&…

计算机组成结构—IO方式

目录 一、程序查询方式 1. 程序查询基本流程 2. 接口电路 3. 接口工作过程 二、程序中断方式 1. 程序中断基本流程 2. 接口电路 3. I/O 中断处理过程 三、DMA 方式 1. DMA 的概念和特点 2. DMA 与 CPU 的访存冲突 3. DMA 接口的功能 4. DMA 接口的组成 5. DMA 的…

Elasticsearch 认证模拟题 - 15

一、题目 原索引 task1 的字段 title 字段包含单词 The,查询 the 可以查出 1200 篇文档。重建 task1 索引为 task1_new,重建后的索引, title 字段查询 the 单词,不能匹配到任何文档。 PUT task1 {"mappings": {"…

机器学习----奥卡姆剃刀定律

奥卡姆剃刀定律(Occam’s Razor)是一条哲学原则,通常表述为“如无必要,勿增实体”(Entities should not be multiplied beyond necessity)或“在其他条件相同的情况下,最简单的解释往往是最好的…

Qt基于SQLite数据库的增删查改demo

一、效果展示 在Qt创建如图UI界面,主要包括“查询”、“添加”、“删除”、“更新”,四个功能模块。 查询:从数据库中查找所有数据的所有内容,并显示在左边的QListWidget控件上。 添加:在右边的QLineEdit标签上输入需…

pc之间的相互通信详解

如图,实现两台pc之间的相互通信 1.pc1和pc2之间如何进行通讯。 2.pc有mac和ip,首先pc1需要向sw1发送广播,sw1查询mac地址表,向router发送广播,router不接受广播,router的每个接口都有ip和mac,…

使用 Scapy 库编写 TCP SYN 洪水攻击脚本

一、介绍 TCP SYN 洪水攻击是一种拒绝服务攻击(Denial-of-Service, DoS)类型,攻击者通过向目标服务器发送大量的伪造TCP连接请求(SYN包),消耗目标服务器的资源,导致其无法处理合法用户的请求。…

13. ESP32-HTTPClient(Arduino)

使用ESP32 Arduino框架的HTTPClient库进行HTTP请求 在ESP32开发里,网络通信是挺重要的一部分,你可能需要从服务器拿数据啊,或者把传感器数据发到云端什么的。不过别担心,ESP32 Arduino框架给我们提供了HTTPClient库,让…

力扣 有效的括号 栈

Problem: 20. 有效的括号 文章目录 思路复杂度&#x1f49d; Code 思路 &#x1f468;‍&#x1f3eb; 参考地址 复杂度 时间复杂度: O ( n ) O(n) O(n) 空间复杂度: O ( n ) O(n) O(n) &#x1f49d; Code class Solution {static Map<Character, Character> m…

【启明智显分享】基于工业级芯片Model3A的7寸彩色触摸屏应用于智慧电子桌牌方案

一场大型会议的布置&#xff0c;往往少不了制作安放参会人物的桌牌。制作、打印、裁剪&#xff0c;若有临时参与人员变更&#xff0c;会务方免不了手忙脚乱更新桌牌。由此&#xff0c;智能电子桌牌应运而生&#xff0c;工作人员通过系统操作更新桌牌信息&#xff0c;解决了传统…