【图像识别系统】表情识别Python+人工智能深度学习+TensorFlow+卷积算法网络模型+图像识别

表情识别系统,本系统使用Python作为主要编程语言,通过TensorFlow搭建ResNet50卷积神经算法网络模型,通过对7种表情图片数据集(‘Neutral’, ‘Anger’, ‘Disgust’, ‘Fear’, ‘Happy’, ‘Sad’, ‘Surprise’)进行训练,得到一个进度较高的H5格式的模型文件。然后使用Django框架搭建了一个Web网页端可视化操作界面。实现用户上传一张图片识别其名称。

一、项目介绍

基于Python和TensorFlow,开发了一个表情识别系统,该系统利用先进的深度学习技术,通过卷积神经网络模型ResNet50对人脸表情进行识别。该系统主要针对七种基本人脸表情:中性、愤怒、厌恶、恐惧、快乐、悲伤和惊讶,进行分类和识别。这种表情识别技术在人机交互、情绪分析、安全监控等领域具有广泛的应用前景。
ResNet50是一种具有50层网络的深度残差网络,因其出色的性能和较低的训练成本,在图像识别任务中广受欢迎。在本项目中,研究者通过使用TensorFlow框架,不仅优化了模型的训练过程,还确保了高效的数据处理和模型迭代。此外,模型经过大量的训练数据集(包含不同种类的表情图片)训练后,能够达到较高的识别精度,并被保存为H5格式,便于后续的模型加载和迁移学习。
为了提高用户体验,还使用Django框架建立了一个Web页面,允许用户通过网页端上传图片,并快速得到表情识别的结果。这种交互方式不仅方便用户操作,也使得表情识别技术的应用更加灵活和广泛。通过网页界面,用户可以直观地了解到自己上传图片中的表情类别,从而在实际应用中更好地利用这项技术,例如在心理咨询、广告推荐等领域根据用户的情绪反应进行相应的策略调整。
综上,这一基于深度学习的表情识别系统展示了计算机视觉和人工智能技术在理解和分析人类表情方面的强大能力。随着技术的不断进步和优化,未来这种技术有望在更多实际应用场景中发挥关键作用,提升机器对人类情绪的感知和互动效果。

二、演示视频 and 代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/vs10gd5dvggrr6ay

三、效果图片展示

img_06_03_19_08_34

img_06_03_19_08_45

img_06_03_19_09_02

四、TensorFlow介绍

TensorFlow 是由谷歌开发的一个强大的开源软件库,用于数值计算,特别适合大规模的机器学习任务。在图像识别领域,TensorFlow 提供了多样化的预训练模型和定制工具,这些都大大简化了从数据处理到模型训练的整个流程。其核心特点包括:

  1. 灵活性和可扩展性:TensorFlow 支持各种复杂的网络架构,使研究人员和开发人员能够轻松实现和测试新的算法理念。
  2. 自动微分系统:TensorFlow 的自动微分功能使得计算复杂模型的梯度变得简单,对于训练深度学习模型尤其重要。
  3. 强大的生态系统:TensorFlow 提供了丰富的API文档、教程和社区支持,帮助用户快速解决开发中的问题。
  4. 硬件加速:TensorFlow 支持GPU和TPU加速,可以显著提高模型训练和推理的速度,适合处理大量数据。
  5. TensorBoard 可视化:通过TensorBoard,用户可以可视化模型的训练过程,包括参数变化、模型结构和性能指标等。

以下是使用 TensorFlow 实现的一个简单的卷积神经网络(CNN)来进行图像识别的例子。此示例使用 CIFAR-10 数据集,这是一个常用的彩色图像数据集,包含10个类别的60000张32x32像素的图像。

import tensorflow as tf
from tensorflow.keras import datasets, layers, models# 加载数据集
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()# 标准化数据
train_images, test_images = train_images / 255.0, test_images / 255.0# 构建模型
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10))# 编译和训练模型
model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels))# 评估模型
test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)
print(f'Test accuracy: {test_acc}')

这段代码演示了如何使用 TensorFlow 快速构建、训练并评估一个基本的CNN模型,对图像分类任务进行处理。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/21976.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RabbitMQ学习笔记(一)RabbitMQ部署、5种队列模型

文章目录 1 认识MQ1.1 同步和异步通讯1.1.1 同步通讯1.1.2 异步通讯 1.2 技术对比 2 RabbitMQ入门2.1 RabbitMQ单机部署2.2 RabbitMQ基本结构2.3 RabbitMQ队列模型2.3.1 简单队列模型(Simple Queue Model)2.3.2 工作队列模型(Work Queue Mode…

visual studio打包qt算子时,只生成dll没有生成lib等文件

问题:在visual studio配置了qt项目,并打包成dll,原则上会生成一堆文件,包括dll,lib等文件。 解决办法: 挨个右击源代码的所有头文件-》属性-》项类型。改成qt头文件形式,如下。

事务详讲(本地及分布式)

本地事务在分布式的问题: 因为在分布式服务中,难免一个接口中会有很多调用远程服务的情况,这个就非常容易出现问题,以下是一个详细的例子: 例如,你为了保证事物的一致性等要求,所以,你方法上只写了Transactional,但你的业务中又需要调用其他微服务的方法(Feign),这时就容易出现…

【机器学习】Qwen1.5-14B-Chat大模型训练与推理实战

目录 一、引言 二、模型简介 2.1 Qwen1.5 模型概述 2.2 Qwen1.5 模型架构 三、训练与推理 3.1 Qwen1.5 模型训练 3.2 Qwen1.5 模型推理 四、总结 一、引言 Qwen是阿里巴巴集团Qwen团队的大语言模型和多模态大模型系列。现在,大语言模型已升级到Qwen1.5&…

使用 Scapy 库编写 ICMP 重定向攻击脚本

一、介绍 ICMP重定向攻击(ICMP Redirect Attack)是一种网络攻击,攻击者通过发送伪造的ICMP重定向消息,诱使目标主机更新其路由表,以便将数据包发送到攻击者控制的路由器或其他不可信任的设备上。该攻击利用了ICMP协议…

springboot配置集成RedisTemplate和Redisson,使用分布式锁案例

文章要点 自定义配置属性类集成配置RedisTemplate集成配置分布式锁Redisson使用分布式锁简单实现超卖方案 1. 项目结构 2. 集成RedisTemplate和Redisson 添加依赖 依赖的版本与继承的spring-boot-starter-parent工程相对应&#xff0c;可写可不写 <!--spring data redis…

Spring boot 集成mybatis-plus

Spring boot 集成mybatis-plus 背景 Spring boot集成mybatis后&#xff0c;我们可以使用mybatis来操作数据。然后&#xff0c;我们还是需要写许多重复的代码和sql语句&#xff0c;比如增删改查。这时候&#xff0c;我们就可以使用 mybatis-plus了&#xff0c;它可以极大解放我…

沐风老师3DMAX顶点切线控制插件VertexTangants安装使用方法

3DMAX顶点切线控制插件VertexTangants安装使用方法 3DMAX顶点切线控制插件VertexTangants&#xff0c;用于轻松控制图形顶点切线的工具。 【主要功能】 -脚本具有获取选定顶点的自动检测功能&#xff0c;您可以随时使用“获取按钮”获取选定顶点。 -有一个用于激活撤消的ON按…

项目资源管理

目录 1.概述 2.六个过程 2.1. 规划资源管理 2.2. 估算活动资源 2.3. 获取资源 2.4. 建设团队 2.5. 管理团队 2.6. 控制资源 3.应用场景 3.1.十个应用场景 3.2.软件开发项目 3.2.1. 资源规划 3.2.2. 资源分配 3.2.3. 资源获取 3.2.4. 资源优化 3.2.5. 资源监控与…

如何在外网http访问内网邮件server?

不少公司选择用winmail搭建部署内部邮箱服务器&#xff0c;对于邮件管理员&#xff0c;不但需要在局域网内&#xff0c;常常需要在外网也能访问到邮箱服务管理。winmail本身系统功能可以开启http访问管理&#xff0c;但当需要在外网http访问内网邮箱服务时&#xff0c;需要用到…

vue3通过Vite实现工程化

1. vue3简介 Vue 是一款用于构建用户界面的 JavaScript 框架。它基于标准 HTML、CSS 和 JavaScript 构建&#xff0c;并提供了一套声明式的、组件化的编程模型&#xff0c;帮助你高效地开发用户界面。无论是简单还是复杂的界面&#xff0c;Vue 都可以胜任。官网为:Vue.js - 渐进…

秋招突击——算法打卡——6/3——复习{最低通行费、(状态压缩DP)小国王}——新做:{罗马数字转整数、最长公共前缀}

文章目录 复习背包模型——最低通行费题目内容实现代码 &#xff08;状态压缩DP&#xff09;小国王检查状态本身是否存在两个连续的1计算所有的合法状态已经所有合法状态之间的转移动态规划过程 新作罗马数字转整数个人实现实现代码 参考做法实现代码 最长公共前缀个人实现参考…

Docker无法stop或者rm指定容器

Docker无法stop或者rm指定容器 今日准备重启一下docker 容器部署的 Nginx 时&#xff0c;使用的命令是 docker exec -it ir-nginx nginx -s reload 结果发现无法重启报错 然后想着关闭再启动&#xff0c;结果发现 docker restart 、docker stop 、docker kill 、docker exec 都…

【科学文献计量】使用Endnote软件打开中国知网导出的文献期刊解析不正确问题解决

使用Endnote软件打开中国知网导出的文献期刊解析不正确问题解决 问题解决问题 新建一个Endnote的材料库,然后把下载好的中国知网文献数据(知网数据导出的是Endnote格式样式)导入进来。找到文件所在路径,导入的类型选择是“Endnote import”,然后点击确定,界面结果如下 …

汇编:数据定义数据填充

数组的定义 在32位汇编语言中&#xff0c;定义数组时&#xff0c;通常使用定义数据指令&#xff08;如 DB, DW, DD,DQ &#xff09;和标签来指定数组的名称和内容。DB定义字节数组&#xff08;每个元素占1字节&#xff09;、DW定义字数组&#xff08;每个元素占2字节&#xff…

CAD 文件(DXF / DWG)转换为(DXF / PDF / PNG / SVG)

方法一Github 这个是ezdxf出品的&#xff0c;可以使用命令行的方式进行转换 ezdxf draw -o file.<png|svg|pdf> <file.dxf>也可以自己改动代码 examples/addons/drawing/pdf_export.py 但是直接运行会有误&#xff0c;以下是我改动后的代码&#xff1a; from ez…

#13前端后花园周刊-10个现代 Node.js 运行时新特性、Nextjs15、Astro4.9、CSS压缩

⚡️行业动态 JavaScript 的创建者 Brendan Eich 在 Twitter/X 上出现&#xff0c;反驳了 JS 是“最邋遢的”的说法&#xff0c;称其只有 50% 。 &#x1f4c6;发布 Next.js 15 RC 流行的 React 元框架已经准备好迎接一个主要的新版本&#xff0c;它有一个 RC&#xff0c;让…

VS2015 +Qt 新建单元测试工程报错error LNK2019,error LNK2001: 无法解析的外部符号 WinMain

项目场景&#xff1a; 使用Qt5.9.9和vs2015进行单元测试工程的创建 问题描述 创建完成后&#xff0c;编译项目&#xff0c;报错&#xff1a; error LNK2019&#xff0c;error LNK2001: 无法解析的外部符号 WinMain 原因分析&#xff1a; 原因是笔者创建工程的时候&#xf…

python如何base64编码与解码操作???

前言 之前的文章有提到Base64编码的实现原理&#xff0c;你一定非常想尝试一下&#xff0c;对吧&#xff1f;对&#xff0c;你非常想尝试一下&#xff08;不接受反驳&#xff0c;你想你想你很想&#xff09;。既然你这么想尝试&#xff0c;那今天来看一下在python中如何使用Ba…

贝锐蒲公英异地组网:降低建筑工地远程视频监控成本、简化运维

中联建设集团股份有限公司是一家建筑行业的施工单位&#xff0c;专注于建筑施工&#xff0c;业务涉及市政公用工程施工总承包、水利水电工程施工总承包、公路工程施工总承包、城市园林绿化专业承包等&#xff0c;在全国各地开展有多个建筑项目&#xff0c;并且项目时间周期可能…