xgboost项目实战-保险赔偿额预测与信用卡评分预测001

目录

算法代码

原理

算法流程

xgb.train中的参数介绍

 params

min_child_weight

gamma

技巧


算法代码

代码获取方式:链接:https://pan.baidu.com/s/1QV7nMC5ds5wSh-M9kuiwew?pwd=x48l 
提取码:x48l

特征直方图统计:

fig, (ax1, ax2) = plt.subplots(1,2)
fig.set_size_inches(16,5)
ax1.hist(uniq_values_in_categories.unique_values, bins=50)

特征相关性分析

plt.subplots(figsize=(16,9))
correlation_mat = train[cont_features].corr()
sns.heatmap(correlation_mat, annot=True)

交叉验证调参

plt.figure()
bst_cv1[['train-mae-mean', 'test-mae-mean']].plot()

交叉验证获取核心参数

mean_test_score = scores['mean_test_score']
std_test_score = scores['std_test_score']
params = scores['params']_params = []
_params_mae = []
for i in range(len(mean_test_score)):_params.append(params[i])_params_mae.append(mean_test_score[i])
params = np.array(_params)
grid_res = np.column_stack((_params,_params_mae))
print(grid_res)
print(grid_res.shape)
return [grid_res[:,i] for i in range(grid_res.shape[1])]

原理

xgboost可以处理二分类、多分类、回归问题;

Extreme Gradient Boosting。XGBoost(Extreme Gradient Boosting)是一种基于决策树的集成学习算法,它在梯度提升(Gradient Boosting)框架下进行了改进和优化。其基本原理包括以下几个关键步骤:

 集成学习

XGBoost采用集成学习的思想,通过结合多个弱学习器(通常是决策树)来构建一个强大的集成模型。每个弱学习器都是针对数据的不同部分进行训练,然后将它们组合起来形成最终的预测模型。

 决策树的串行训练与集成

XGBoost通过串行训练决策树来构建集成模型。在每一轮训练中,新的决策树被设计为纠正前一轮模型的残差,以逐步减少训练误差。通过迭代添加树模型,XGBoost构建了一个更强大的整体模型。

 正则化

XGBoost引入了正则化技术来控制模型的复杂度,防止过拟合。正则化项包括对树结构的惩罚,以及对叶子节点样本权重的约束,这有助于提高模型的泛化能力。

 特征重要性评估

XGBoost提供了对特征重要性的评估,可以帮助用户了解哪些特征对模型的预测贡献最大。这有助于特征选择和模型解释。

 高效的工程实现

XGBoost在算法和工程实现上都进行了优化,具有高效的训练速度和内存利用率,使其能够处理大规模数据集。

总的来说,XGBoost通过串行训练决策树、引入正则化和特征重要性评估等技术,构建了一种高效而强大的集成学习模型,适用于各种机器学习任务,特别是在结构化数据和表格数据上表现优异。

算法流程

XGBoost(eXtreme Gradient Boosting)是一种基于梯度提升树(Gradient Boosting Tree)的机器学习算法,它在提升树算法的基础上进行了优化和改进,以提高模型的性能和效率。以下是XGBoost算法的基本流程:

  1. 初始化模型参数:包括树的深度、学习率、树的数量等。
  2. 构建初始树:用一个简单的回归树或分类树作为初始模型。
  3. 迭代优化

1.计算损失函数的梯度:根据当前模型对训练数据的预测结果,计算损失函数的梯度。常用的损失函数包括平方损失函数(用于回归问题)和对数损失函数(用于分类问题)。

2.构建新树:基于损失函数的梯度,构建一棵新的回归树或分类树,该树的叶子节点数通常比较少。

3.更新模型:通过将新建的树与之前的模型相加,更新模型的预测结果。为了防止过拟合,通常会乘以一个小于1的学习率。

4.正则化:为了控制模型的复杂度和防止过拟合,可以引入正则化项,如树的深度限制、叶子节点权重的L1和L2正则化。

5. 迭代终止条件:可以设定迭代次数、达到一定的模型性能或损失下降率等作为终止条件。

6.输出最终模型:当满足终止条件时,输出最终的集成模型。

XGBoost通过优化目标函数的梯度提升树模型,采用了一些技术和策略,如加权损失函数、子采样、列抽样、树剪枝等,以提高模型的泛化能力和训练速度。

xgb.train中的参数介绍

xgb.train 函数是用于训练模型的主要函数之一。它允许你手动指定模型的各种参数,以定制化地训练 XGBoost 模型。

 params

字典类型,表示要传递给 XGBoost 模型的参数。常见的参数包括:reg:linear 表示 XGBoost 将使用线性回归作为优化目标,即模型的输出是一个连续值,目标是最小化预测值与实际值之间的均方误差(MSE)或其他回归损失函数。

binary:logistic 是 XGBoost 中用于二分类问题的一种优化目标(objective)。使用逻辑回归(Logistic Regression)作为优化目标,用于解决二分类问题。

在二分类任务中目标是将样本分为两个类别,正类和负类。而binary:logistic 的作用是训练一个模型,使得对于给定的输入特征,模型能够输出一个概率值,表示样本属于正类的概率。然后设定一个阈值,将这个概率转换为类别标签,例如大于阈值则预测为正类,小于阈值则预测为负类。

使用 binary:logistic 作为优化目标时,模型的输出会通过逻辑函数(sigmoid 函数)转换为 0 到 1 之间的概率值,表示正类的概率。然后,模型会根据损失函数(通常是对数损失函数)来优化模型参数,以最大化预测的概率与实际标签的一致性。

multi:softmax多分类问题的一种优化目标(objective)设置。具体来说,multi:softmax 表示 XGBoost 将使用 Softmax 函数作为优化目标,用于多类别分类。Softmax 函数可以将模型的原始输出转换为每个类别的概率分布,使得概率之和为 1。在训练过程中,XGBoost 会优化模型参数,以最大化实际类别的概率与预测类别的概率之间的一致性。

XGBoost 将会训练一个多分类模型,该模型会尝试在给定数据集上学习出最佳的分类决策边界,以便能够将样本正确地分到多个类别中去。

对于回归任务(如 reg:linear),常用的评估指标包括均方误差(rmse)、平均绝对误差(mae)等。

对于二分类任务(如 binary:logistic),常用的评估指标包括准确率(error)、AUC(auc)等。

对于多分类任务(如 multi:softmax),常用的评估指标包括准确率(merror)、多分类对数损失(mlogloss)等。

min_child_weight

较大的 min_child_weight 值会导致更加保守的树模型,因为它限制了每个叶子节点的样本权重总和,使得树的生长更加受限制。相反,较小的 min_child_weight 值允许模型更多地考虑每个叶子节点的样本,可能导致模型过拟合。

注意:在决策树的训练过程中,每个样本都会被分配一个权重,这个权重可以用来调节样本对模型的贡献程度。

当训练一棵决策树时,XGBoost 会根据样本的权重来计算叶子节点的样本权重。这个过程涉及到样本在树的每个节点上的传递和累积,最终得到每个叶子节点所包含的样本的权重之和。

通过调节叶子节点的样本权重,我们可以控制模型对不同样本的关注程度,进而影响模型的泛化能力和性能。

选择合适的min_child_weight值通常需要通过交叉验证来进行调整。如果min_child_weight设置得太大,可能会导致模型欠拟合;如果设置得太小,可能会导致模型过拟合。

通过调节 subsample 参数,可以控制每棵树的训练样本的多少,从而影响模型的方差和泛化能力。较小的 subsample 值可以降低模型的方差,因为每棵树使用的样本更少,模型更加稳定,但可能会增加偏差。较大的 subsample 值可以提高模型的拟合能力,但可能导致过拟合。

通过调节 colsample_bytree 参数,可以控制每棵树使用的特征的数量,从而增加模型的多样性,减少过拟合的风险。较小的 colsample_bytree 值可以降低模型的方差,增加模型的泛化能力,但可能会增加模型的偏差。较大的 colsample_bytree 值可以提高模型的拟合能力,但也可能导致过拟合。

  1. dtrain: 训练数据集(DMatrix 格式),是 XGBoost 特有的数据结构,用于高效存储和处理大型数据集。
  2. evals: 需要评估的数据集列表,通常包括训练数据集和验证数据集。
  3. obj: 自定义目标函数(可选)。
  4. feval: 自定义评估函数(可选)。
  5. early_stopping_rounds: 当验证指标不再提升时,停止训练的迭代次数。

early_stopping_rounds 参数指定了在多少个迭代轮次内,如果模型的性能在验证集上没有改善,就停止训练。例如如果将 early_stopping_rounds 设置为 10,那么在训练过程中如果连续 10 个迭代轮次内模型的性能都没有提升,训练就会提前终止。

 verbose_eval: 控制输出信息的频率。如果设置为一个非负整数,则表示每隔指定的迭代轮次输出一次训练信息。例如,如果 verbose_eval 设置为 100,那么每隔 100 个迭代轮次就会输出一次训练信息。

如果设置为 True,则表示在每个迭代轮次结束后都输出训练信息。

 callbacks: 回调函数列表,用于在训练过程中执行自定义操作(如保存模型)。callbacks 参数可以用于指定回调函数,在训练过程中执行特定的操作。常见的用途包括提前停止训练、保存模型、记录训练过程中的指标等。

gamma

`gamma` 参数是一个用于控制模型复杂度的关键参数,它是在构建决策树时用来进行剪枝的。`gamma` 参数的值越大,模型就越保守,倾向于剪枝,这样可以避免过拟合。相反,`gamma` 参数的值越小,模型就越自由,可以生长更多的叶子节点,这可能会导致过拟合。

`gamma` 参数实际上代表了在添加一个新的分裂点时,所需的最小减少的损失。如果一个分裂点不能至少减少 `gamma` 这么多的损失,那么这个分裂点就会被忽略。因此,`gamma` 可以被视为一个正则化项,用于控制模型的复杂度。

在数学上,`gamma` 参数与树的叶子节点的数量和深度直接相关。较大的 `gamma` 值会导致生成较浅的树,因为需要更大的损失减少来创建新的分裂。较小的 `gamma` 值会导致生成较深的树,因为较小的损失减少就足够创建新的分裂。

在实际应用中,调整 `gamma` 参数可以帮助找到模型复杂度和性能之间的最佳平衡点。如果模型的性能在验证集上不佳,可能需要增加 `gamma` 值来减少过拟合。相反,如果模型在训练集上的性能不佳,可能需要减小 `gamma` 值来增加模型的复杂度。

`gamma` 被设置为 0,这意味着默认情况下不会有额外的剪枝。在实际应用中,你可能需要通过交叉验证等方法来调整 `gamma` 的值,以找到最佳的模型配置。

技巧

train.select_dtypes: 选择不同数据类型的特征;

偏度概念

scipy库中,stats.mstats.skew()函数用于计算数据的偏度(skewness)。偏度是描述数据分布不对称性的一个统计量,它是衡量数据分布相对于平均值的偏斜程度。

偏度的计算公式为:

其中:

  • ( n ) 是数据点的数量。
  • ( x_i ) 是第 ( i ) 个数据点。
  • ( bar{x} ) 是数据的平均值。
  • ( s ) 是标准差。
  • 如果偏度为正数,数据分布是右偏的,即数据点倾向于分布在平均值的右侧。
  • 如果偏度为负数,数据分布是左偏的,即数据点倾向于分布在平均值的左侧。
  • 如果偏度为零,数据分布是对称的,即数据点均匀分布在平均值两侧。
  • 偏度值接近于零,表示数据分布比较对称。
  • 偏度值远大于零或远小于零,表示数据分布非常偏斜。 在scipy.stats.mstats.skew()函数中,如果bias参数设置为True,则计算的是无偏估计量,即考虑了数据点的数量对偏度的影响。如果bias参数设置为False,则计算的是未调整偏度的原始估计量,这通常只在理论分析中使用。 例如,使用scipy.stats.mstats.skew()函数计算数据集的偏度:

连续数值特征与分类特征需要分开处理;

使用直方图可视化,统计频率分布;

corr()计算特征之间相关系数;并用sns.heatmap绘制热力图;

保险预测--回归问题;

在Python的pandas库中,astype('category') 方法将pandas的DataFrame或Series列转换为类别类型(categorical type)。这通常用于处理具有有限数量的不同值的列,例如性别、国家代码等。转换为类别类型可以节省内存,并且可以加快某些操作的处理速度。

使用 cat.codes 属性来获取每个类别值的数字编码。这些编码是整数,表示每个唯一类别在类别列表中的位置。例如,如果有一个包含三个不同国家的列,那么这些国家可能会被编码为0、1和2。

GridSearchCV(XGBoostRegressor): 交叉验证获取最佳参数,例如max_depth; min_child_weight;

一般交叉验证调参

Step 1: 选择一组初始参数

Step 2: 改变 max_depth 和 min_child_weight.

Step 3: 调节 gamma 降低模型过拟合风险.

Step 4: 调节 subsample 和 colsample_bytree 改变数据采样策略.

Step 5: 调节学习率 eta.(与数的深度反复调节)

ETA和num_boost_round依赖关系不是线性的,但是有些关联。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/16240.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

各大模型厂商API使用:百度、阿里、豆包、kimi、deepseek

百度ERNIE(支持requests接口) ERNIE Speed、ERNIE Lite免费 免费测试下来模型ernie_speed输出吞吐量计算20-30来个,“{length/cost} tokens/s” 输出总长度/耗时 https://qianfan.cloud.baidu.com/ 文档: https://cloud.baidu.com/doc/WENXINWORKSHOP/s/dltgsna1o a…

智能进化:深度学习与进化计算的融合艺术

《进化深度学习》这本书深入探索了进化计算(EC)在深度学习领域的应用,为读者提供了一套丰富而实用的技术工具,这些工具可以贯穿深度学习的整个过程,助力研究者们解决各种复杂的问题。书中不仅详细介绍了遗传算法和进化…

怎么理解直接程序控制和中断方式?

直接程序控制 看完之后是不是依然一头雾水?来看下面两个例子 无条件传送 假设你正在使用键盘打字。当你敲击键盘上的一个键时,键盘会立即产生一个信号(即输入数据),并且这个信号会立即被电脑接收。在这个过程中&…

比较两列数据

点其中一个数据 删掉S,回车 大的标红

v-cloak 用于在 Vue 实例渲染完成之前隐藏绑定的元素

如果你是后端开发者&#xff08;php&#xff09;&#xff0c;在接触一些vue2开发的后台时&#xff0c;会发现有这段代码&#xff1a; # CDN <script src"https://cdn.jsdelivr.net/npm/vue2/dist/vue.js"></script> # 或 <script src"https://cd…

三十六计的笔记

系列文章目录 三十六计的笔记 文章目录 系列文章目录1、瞒天过海2、围魏救赵3、借刀杀人4、以逸待劳5、趁火打劫6、声东击西7、无中生有8、暗渡陈仓9、隔岸观火10、笑里藏刀11、李代桃僵12、顺手牵羊13、打草惊蛇14、借尸还魂15、调虎离山16、欲擒故纵17、抛砖引玉18、擒贼擒王…

9.3 Go语言入门(变量声明和函数调用)

Go语言入门&#xff08;变量声明和函数调用&#xff09; 目录二、变量声明和函数调用1. 变量声明1.1 使用 var 关键字声明1.2 简短声明1.3 零值1.4 常量 2. 函数调用2.1 函数定义2.2 多个返回值2.3 命名返回值2.4 可变参数2.5 匿名函数和闭包 目录 Go 语言&#xff08;Golang&a…

粤嵌—2024/5/21—打家劫舍(✔)

代码实现&#xff1a; int rob(int *nums, int numsSize) {if (numsSize 1) {return nums[0];}if (numsSize 2) {return fmax(nums[0], nums[1]);}int dp[numsSize];dp[0] nums[0];dp[1] fmax(nums[0], nums[1]);for (int i 2; i < numsSize; i) {dp[i] fmax(dp[i - 1…

高中数学:平面向量-正交分解、坐标表示、坐标运算

一、正交分解 二、坐标表示 这里注意一点 坐标A(x,y)与向量 a → \mathop{a}\limits ^{\rightarrow} a→的坐标记作&#xff1a; a → \mathop{a}\limits ^{\rightarrow} a→(x,y)&#xff0c;表示方式的区别 引申 三、加减运算的坐标表示 四、数乘运算的坐标表示 引申 两向量…

Go微服务: Nacos的搭建和基础API的使用

Nacos 概述 文档&#xff1a;https://nacos.io/docs/latest/what-is-nacos/搭建&#xff1a;https://nacos.io/docs/latest/quickstart/quick-start-docker/有很多种搭建方式&#xff0c;我们这里使用 docker 来搭建 Nacos 的搭建 这里&#xff0c;我们选择单机模式&#xf…

pytest-sugar插件:对自动化测试用例加入进度条

摘要 在自动化测试过程中&#xff0c;测试进度的可视化对于开发者和测试工程师来说非常重要。本文将介绍如何使用pytest-sugar插件来为pytest测试用例添加进度条&#xff0c;从而提升测试的可读性和用户体验。 1. 引言 自动化测试是软件开发过程中不可或缺的一部分&#xff…

Linux系统命令traceroute详解(语法、选项、原理和实例)

目录 一、traceroute概述 二、语法 1、基本语法 2、命令选项 三、帮助信息 四、示例 1. 使用默认模式&#xff08;ICMP Echo&#xff09;追踪到目标主机 2. 使用UDP模式&#xff08;需要root权限&#xff09;追踪到目标主机 3. 不解析IP地址为主机名&#xff0c;直接显…

纯电动汽车硬件在环测试

纯电动汽车硬件在环测试技术研究综述 1、新能源汽车概述 随着新能源汽车“电动化、智能化、网联化、共享化”进程的不断推进&#xff0c;新能源汽车的整体性能得到显著提高&#xff0c;纯电动汽车已经逐渐走进大众视野&#xff0c;消费者对于新能源汽车的认可度和购买欲望也稳…

让大模型变得更聪明三个方向

让大模型变得更聪明三个方向 随着人工智能技术的飞速发展&#xff0c;大模型在多个领域展现出了前所未有的能力&#xff0c;但它们仍然面临着理解力、泛化能力和适应性等方面的挑战。那么&#xff0c;如何让大模型变得更聪明呢&#xff1f; 方向一&#xff1a;算法创新 1.1算…

粤嵌—2024/5/20—三角形最小路径和(✔)

代码实现&#xff1a; int minimumTotal(int **triangle, int triangleSize, int *triangleColSize) {if (triangleSize 1) {return triangle[0][0];}for (int i 1; i < triangleSize; i) {for (int j 0; j < triangleColSize[i]; j) {int x i - 1;int y1 j - 1, y2…

【数据结构】快速排序详解!

文章目录 1. 快速排序的非递归版本2. 快速排序2.1 hoare 版本一2.2 挖坑法 &#x1f427;版本二2.3 前后指针 版本三2.4 调用以上的三个版本的快排 3. 快速排序的优化 1. 快速排序的非递归版本 &#x1f192;&#x1f427;关键思路&#xff1a; &#x1f34e;① 参数中的begin…

力扣刷题---LCS 02. 完成一半题目【简单】

题目描述 有 N 位扣友参加了微软与力扣举办了「以扣会友」线下活动。主办方提供了 2*N 道题目&#xff0c;整型数组 questions 中每个数字对应了每道题目所涉及的知识点类型。 若每位扣友选择不同的一题&#xff0c;请返回被选的 N 道题目至少包含多少种知识点类型。 示例 1&…

YOLOv10 论文学习

论文链接&#xff1a;https://arxiv.org/pdf/2405.14458 代码链接&#xff1a;https://github.com/THU-MIG/yolov10 解决了什么问题&#xff1f; 实时目标检测是计算机视觉领域的研究焦点&#xff0c;目的是以较低的延迟准确地预测图像中各物体的类别和坐标。它广泛应用于自动…

JVM学习-Class文件结构①

字节码文件的跨平台性 Java语言&#xff1a;跨平台的语言(Write Once,Run Anywhere) 当Java源代码编译成字节码后&#xff0c;如果想在不同平台上运行&#xff0c;则无须再次编译这上优势不再那么吸引人&#xff0c;Python,PHP,Ruby,Lisp等有强大的解释器跨平台似乎已经成为一…

《最新出炉》系列入门篇-Python+Playwright自动化测试-41-录制视频

宏哥微信粉丝群&#xff1a;https://bbs.csdn.net/topics/618423372 有兴趣的可以扫码加入 1.简介 上一篇讲解和分享了录制自动生成脚本&#xff0c;索性连带录制视频也一股脑的在这里就讲解和分享了。今天我们将学习如何使用Playwright和Python来录制浏览器操作的视频&#…