【Matlab】基于粒子群优化算法优化BP神经网络的时间序列预测(Excel可直接替换数据)

【Matlab】基于粒子群优化算法优化BP神经网络的时间序列预测(Excel可直接替换数据)

  • 1.模型原理
  • 2.数学公式
  • 3.文件结构
  • 4.Excel数据
  • 5.分块代码
    • 5.1 fun.m
    • 5.2 main.m
  • 6.完整代码
    • 6.1 fun.m
    • 6.2 main.m
  • 7.运行结果

1.模型原理

基于粒子群优化算法(Particle Swarm Optimization, PSO)优化BP神经网络的时间序列预测是一种结合了PSO和BP神经网络的方法,用于提高BP神经网络在时间序列预测任务中的性能。时间序列预测是指根据过去的时间序列数据,预测未来的时间序列值。BP神经网络是一种常用的前向人工神经网络,但在复杂的时间序列预测问题上可能陷入局部最优解。PSO是一种全局优化算法,可以帮助寻找更优的神经网络权重和偏置值,从而提高BP神经网络的预测精度。

以下是“基于粒子群优化算法优化BP神经网络的时间序列预测”的原理:

  1. BP神经网络简介
    BP神经网络是一种前向人工神经网络,由输入层、若干隐藏层和输出层组成。它通过前向传播计算输出,并通过反向传播算法来更新权重和偏置,以最小化预测值与真实值之间的误差。BP神经网络在时间序列预测问题中可以用于拟合非线性函数,并通过梯度下降法进行参数优化。

  2. 粒子群优化算法简介
    PSO是一种群体智能优化算法,受到鸟群觅食行为的启发。在PSO中,个体被称为“粒子”,它们在搜索空间中移动,并通过学习社会最优和个体最优位置来更新自己的位置和速度。每个粒子维护两个向量:速度向量和位置向量,它们决定了粒子在搜索空间中的移动方向和距离。

  3. 基于粒子群优化的BP神经网络优化
    在使用PSO优化BP神经网络时,我们将BP神经网络的权重和偏置作为待优化的参数。每个粒子表示一组可能的权重和偏置的取值,称为“粒子的位置”。PSO算法中的每个粒子都有一个适应度函数,用于评估其在时间序列预测问题中的表现。在这里,适应度函数可以是回归预测任务中的损失函数,如均方误差。

  4. PSO算法流程
    PSO算法的基本流程如下:

    • 初始化粒子群的位置和速度。
    • 计算每个粒子的适应度值(即神经网络在训练数据上的预测误差)。
    • 根据个体最优和全局最优位置更新粒子的速度和位置。
    • 重复上述步骤,直到满足停止条件(如达到最大迭代次数或达到预定的精度)。
  5. 优化过程
    在优化过程中,每个粒子代表了一组BP神经网络的权重和偏置。它们根据自身的适应度和周围粒子的表现来更新自己的位置和速度,以寻找更优的权重和偏置组合。通过迭代优化,粒子逐渐趋向于全局最优解,从而找到了最优的BP神经网络权重和偏置组合,以提高时间序列预测的性能。

  6. 应用于时间序列预测
    将PSO算法与BP神经网络结合应用于时间序列预测任务时,首先需要准备训练数据和测试数据。然后,利用PSO算法优化BP神经网络的权重和偏置,使其能够更好地拟合训练数据。最后,使用优化后的BP神经网络对测试数据进行预测,得到时间序列的预测结果。

总结起来,基于粒子群优化算法优化BP神经网络的时间序列预测方法,通过结合PSO算法的全局优化特性,帮助BP神经网络更好地拟合时间序列数据并提高预测精度。这种方法在时间序列预测任务中具有较好的性能,并且在应用于其他优化问题上也具有广泛的应用价值。

2.数学公式

当然可以!在下面,我将详细介绍“基于粒子群优化算法优化BP神经网络的时间序列预测”的原理,并带上公式:

  1. BP神经网络部分

假设我们有一个时间序列数据 ( X X X),其包含 ( T T T) 个时间步的观测值: X = { x 1 , x 2 , . . . , x T } X = \{x_1, x_2, ..., x_T\} X={x1,x2,...,xT},其中 ( x t x_t xt) 是时间步 ( t t t) 的输入数据。

在BP神经网络中,我们使用前向传播计算隐藏层和输出层的输出,然后使用反向传播算法来更新权重和偏置,以最小化预测值与真实值之间的误差。隐藏层和输出层的计算公式如下:

隐藏层的计算公式:
z h = W x h ⋅ x t + W h h ⋅ h t − 1 + b h z_h = W_{xh} \cdot x_t + W_{hh} \cdot h_{t-1} + b_h zh=Wxhxt+Whhht1+bh
h t = σ ( z h ) h_t = \sigma(z_h) ht=σ(zh)

输出层的计算公式:
z o = W h o ⋅ h t + b o z_o = W_{ho} \cdot h_t + b_o zo=Whoht+bo
y t = σ ( z o ) y_t = \sigma(z_o) yt=σ(zo)

其中,

  • ( h t h_t ht) 是隐藏层在时间步 ( t t t) 的输出(隐藏状态),
  • ( W x h W_{xh} Wxh) 是输入到隐藏层的权重矩阵,
  • ( W h h W_{hh} Whh) 是隐藏层上一时间步输出到当前时间步的隐藏层的权重矩阵,
  • ( b h b_h bh) 是隐藏层的偏置,
  • ( σ \sigma σ) 是激活函数(如 sigmoid 或 tanh)。
  1. 粒子群优化算法部分

在粒子群优化算法中,每个粒子代表一组可能的BP神经网络的权重和偏置,即一组解。这些粒子在搜索空间中移动,并通过学习社会最优和个体最优位置来更新自己的位置和速度。每个粒子维护两个向量:速度向量和位置向量,它们决定了粒子在搜索空间中的移动方向和距离。

假设第 ( i i i) 个粒子在时间步 ( t t t) 时的位置向量为 ( x i t x_{it} xit),速度向量为 ( v i t v_{it} vit),个体最优位置为 ( p i t p_{it} pit),全局最优位置为 ( p g t p_{gt} pgt)。

粒子更新的公式为:
v i t = ω ⋅ v i t + c 1 ⋅ r 1 ⋅ ( p i t − x i t ) + c 2 ⋅ r 2 ⋅ ( p g t − x i t ) v_{it} = \omega \cdot v_{it} + c_1 \cdot r_1 \cdot (p_{it} - x_{it}) + c_2 \cdot r_2 \cdot (p_{gt} - x_{it}) vit=ωvit+c1r1(pitxit)+c2r2(pgtxit)
x i t + 1 = x i t + v i t x_{it+1} = x_{it} + v_{it} xit+1=xit+vit

其中,

  • ( t t t) 是时间步,
  • ( ω \omega ω) 是惯性权重,控制粒子的惯性,
  • ( c 1 c_1 c1) 和 ( c 2 c_2 c2) 是学习因子,分别控制个体和全局的权重,
  • ( r 1 r_1 r1) 和 ( r 2 r_2 r2) 是随机数,用于增加随机性。

在每一次迭代中,通过计算每个粒子的适应度(即BP神经网络在训练数据上的预测误差),找到个体最优位置 ( p i t p_{it} pit) 和全局最优位置 ( p g t p_{gt} pgt),并更新粒子的速度和位置,直到达到停止条件(如达到最大迭代次数或达到预定的精度)为止。

通过以上的粒子群优化过程,每个粒子逐渐趋向于全局最优解,从而找到了最优的BP神经网络权重和偏置组合,在时间序列预测任务中表现出色。

请注意,上述公式中的权重矩阵和偏置是需要在训练过程中学习的模型参数。

3.文件结构

在这里插入图片描述

fun.m							% 适应度值计算
main.m							% 主函数
数据集.xlsx						% 可替换数据集

4.Excel数据

在这里插入图片描述

5.分块代码

5.1 fun.m

function error = fun(pop, hiddennum, net, p_train, t_train)

%% 节点个数

inputnum  = size(p_train, 1);   % 输入层节点数
outputnum = size(t_train, 1);   % 输出层节点数

%% 提取权值和阈值

w1 = pop(1 : inputnum * hiddennum);
B1 = pop(inputnum * hiddennum + 1 : inputnum * hiddennum + hiddennum);
w2 = pop(inputnum * hiddennum + hiddennum + 1 : ...inputnum * hiddennum + hiddennum + hiddennum * outputnum);
B2 = pop(inputnum * hiddennum + hiddennum + hiddennum * outputnum + 1 : ...inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum);

%% 网络赋值

net.Iw{1, 1} = reshape(w1, hiddennum, inputnum );
net.Lw{2, 1} = reshape(w2, outputnum, hiddennum);
net.b{1}     = reshape(B1, hiddennum, 1);
net.b{2}     = B2';

%% 网络训练

net = train(net, p_train, t_train);

%% 仿真测试

t_sim1 = sim(net, p_train);

%% 适应度值

error = sqrt(sum((t_sim1 - t_train) .^ 2) ./ length(t_sim1));

5.2 main.m

%% 清空环境变量

warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%% 导入数据(时间序列的单列数据)

result = xlsread('数据集.xlsx');

%% 数据分析

num_samples = length(result);  % 样本个数 
kim = 15;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测

%% 构造数据集

for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end

%% 划分训练集和测试集

temp = 1: 1: 922;P_train = res(temp(1: 700), 1: 15)';
T_train = res(temp(1: 700), 16)';
M = size(P_train, 2);P_test = res(temp(701: end), 1: 15)';
T_test = res(temp(701: end), 16)';
N = size(P_test, 2);

%% 数据归一化

[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%% 节点个数

inputnum  = size(p_train, 1);  % 输入层节点数
hiddennum = 5;                 % 隐藏层节点数
outputnum = size(t_train, 1);  % 输出层节点数

%% 建立网络

net = newff(p_train, t_train, hiddennum);

%% 设置训练参数

net.trainParam.epochs     = 1000;      % 训练次数
net.trainParam.goal       = 1e-6;      % 目标误差
net.trainParam.lr         = 0.01;      % 学习率
net.trainParam.showWindow = 0;         % 关闭窗口

%% 参数初始化

c1      = 4.494;       % 学习因子
c2      = 4.494;       % 学习因子
maxgen  =   30;        % 种群更新次数  
sizepop =    5;        % 种群规模
Vmax    =  1.0;        % 最大速度
Vmin    = -1.0;        % 最小速度
popmax  =  2.0;        % 最大边界
popmin  = -2.0;        % 最小边界

%% 节点总数

numsum = inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum;for i = 1 : sizepoppop(i, :) = rands(1, numsum);  % 初始化种群V(i, :) = rands(1, numsum);    % 初始化速度fitness(i) = fun(pop(i, :), hiddennum, net, p_train, t_train);
end

%% 个体极值和群体极值

[fitnesszbest, bestindex] = min(fitness);
zbest = pop(bestindex, :);     % 全局最佳
gbest = pop;                   % 个体最佳
fitnessgbest = fitness;        % 个体最佳适应度值
BestFit = fitnesszbest;        % 全局最佳适应度值

%% 迭代寻优

for i = 1 : maxgenfor j = 1 : sizepop% 速度更新V(j, :) = V(j, :) + c1 * rand * (gbest(j, :) - pop(j, :)) + c2 * rand * (zbest - pop(j, :));V(j, (V(j, :) > Vmax)) = Vmax;V(j, (V(j, :) < Vmin)) = Vmin;% 种群更新pop(j, :) = pop(j, :) + 0.2 * V(j, :);pop(j, (pop(j, :) > popmax)) = popmax;pop(j, (pop(j, :) < popmin)) = popmin;% 自适应变异pos = unidrnd(numsum);if rand > 0.95pop(j, pos) = rands(1, 1);end% 适应度值fitness(j) = fun(pop(j, :), hiddennum, net, p_train, t_train);endfor j = 1 : sizepop% 个体最优更新if fitness(j) < fitnessgbest(j)gbest(j, :) = pop(j, :);fitnessgbest(j) = fitness(j);end% 群体最优更新 if fitness(j) < fitnesszbestzbest = pop(j, :);fitnesszbest = fitness(j);endendBestFit = [BestFit, fitnesszbest];    
end

%% 提取最优初始权值和阈值

w1 = zbest(1 : inputnum * hiddennum);
B1 = zbest(inputnum * hiddennum + 1 : inputnum * hiddennum + hiddennum);
w2 = zbest(inputnum * hiddennum + hiddennum + 1 : inputnum * hiddennum ...+ hiddennum + hiddennum * outputnum);
B2 = zbest(inputnum * hiddennum + hiddennum + hiddennum * outputnum + 1 : ...inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum);

%% 最优值赋值

net.Iw{1, 1} = reshape(w1, hiddennum, inputnum);
net.Lw{2, 1} = reshape(w2, outputnum, hiddennum);
net.b{1}     = reshape(B1, hiddennum, 1);
net.b{2}     = B2';

%% 打开训练窗口

net.trainParam.showWindow = 1;        % 打开窗口

%% 网络训练

net = train(net, p_train, t_train);

%% 仿真预测

t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test );

%% 数据反归一化

T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%% 均方根误差

error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);

%% 绘图

figure
plot(1: M, T_train, 'r-', 1: M, T_sim1, 'b-', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
gridfigure
plot(1: N, T_test, 'r-', 1: N, T_sim2, 'b-', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid

%% 误差曲线迭代图

figure
plot(1 : length(BestFit), BestFit, 'LineWidth', 1.5);
xlabel('粒子群迭代次数');
ylabel('适应度值');
xlim([1, length(BestFit)])
string = {'模型迭代误差变化'};
title(string)
grid on

%% 相关指标计算

%  R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2)^2 / norm(T_test  - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])%  MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])%  MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

6.完整代码

6.1 fun.m

function error = fun(pop, hiddennum, net, p_train, t_train)%%  节点个数
inputnum  = size(p_train, 1);   % 输入层节点数
outputnum = size(t_train, 1);   % 输出层节点数%%  提取权值和阈值
w1 = pop(1 : inputnum * hiddennum);
B1 = pop(inputnum * hiddennum + 1 : inputnum * hiddennum + hiddennum);
w2 = pop(inputnum * hiddennum + hiddennum + 1 : ...inputnum * hiddennum + hiddennum + hiddennum * outputnum);
B2 = pop(inputnum * hiddennum + hiddennum + hiddennum * outputnum + 1 : ...inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum);%%  网络赋值
net.Iw{1, 1} = reshape(w1, hiddennum, inputnum );
net.Lw{2, 1} = reshape(w2, outputnum, hiddennum);
net.b{1}     = reshape(B1, hiddennum, 1);
net.b{2}     = B2';%%  网络训练
net = train(net, p_train, t_train);%%  仿真测试
t_sim1 = sim(net, p_train);%%  适应度值
error = sqrt(sum((t_sim1 - t_train) .^ 2) ./ length(t_sim1));

6.2 main.m

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据(时间序列的单列数据)
result = xlsread('数据集.xlsx');%%  数据分析
num_samples = length(result);  % 样本个数 
kim = 15;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测%%  构造数据集
for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end%%  划分训练集和测试集
temp = 1: 1: 922;P_train = res(temp(1: 700), 1: 15)';
T_train = res(temp(1: 700), 16)';
M = size(P_train, 2);P_test = res(temp(701: end), 1: 15)';
T_test = res(temp(701: end), 16)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  节点个数
inputnum  = size(p_train, 1);  % 输入层节点数
hiddennum = 5;                 % 隐藏层节点数
outputnum = size(t_train, 1);  % 输出层节点数%%  建立网络
net = newff(p_train, t_train, hiddennum);%%  设置训练参数
net.trainParam.epochs     = 1000;      % 训练次数
net.trainParam.goal       = 1e-6;      % 目标误差
net.trainParam.lr         = 0.01;      % 学习率
net.trainParam.showWindow = 0;         % 关闭窗口%%  参数初始化
c1      = 4.494;       % 学习因子
c2      = 4.494;       % 学习因子
maxgen  =   30;        % 种群更新次数  
sizepop =    5;        % 种群规模
Vmax    =  1.0;        % 最大速度
Vmin    = -1.0;        % 最小速度
popmax  =  2.0;        % 最大边界
popmin  = -2.0;        % 最小边界%%  节点总数
numsum = inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum;for i = 1 : sizepoppop(i, :) = rands(1, numsum);  % 初始化种群V(i, :) = rands(1, numsum);    % 初始化速度fitness(i) = fun(pop(i, :), hiddennum, net, p_train, t_train);
end%%  个体极值和群体极值
[fitnesszbest, bestindex] = min(fitness);
zbest = pop(bestindex, :);     % 全局最佳
gbest = pop;                   % 个体最佳
fitnessgbest = fitness;        % 个体最佳适应度值
BestFit = fitnesszbest;        % 全局最佳适应度值%%  迭代寻优
for i = 1 : maxgenfor j = 1 : sizepop% 速度更新V(j, :) = V(j, :) + c1 * rand * (gbest(j, :) - pop(j, :)) + c2 * rand * (zbest - pop(j, :));V(j, (V(j, :) > Vmax)) = Vmax;V(j, (V(j, :) < Vmin)) = Vmin;% 种群更新pop(j, :) = pop(j, :) + 0.2 * V(j, :);pop(j, (pop(j, :) > popmax)) = popmax;pop(j, (pop(j, :) < popmin)) = popmin;% 自适应变异pos = unidrnd(numsum);if rand > 0.95pop(j, pos) = rands(1, 1);end% 适应度值fitness(j) = fun(pop(j, :), hiddennum, net, p_train, t_train);endfor j = 1 : sizepop% 个体最优更新if fitness(j) < fitnessgbest(j)gbest(j, :) = pop(j, :);fitnessgbest(j) = fitness(j);end% 群体最优更新 if fitness(j) < fitnesszbestzbest = pop(j, :);fitnesszbest = fitness(j);endendBestFit = [BestFit, fitnesszbest];    
end%%  提取最优初始权值和阈值
w1 = zbest(1 : inputnum * hiddennum);
B1 = zbest(inputnum * hiddennum + 1 : inputnum * hiddennum + hiddennum);
w2 = zbest(inputnum * hiddennum + hiddennum + 1 : inputnum * hiddennum ...+ hiddennum + hiddennum * outputnum);
B2 = zbest(inputnum * hiddennum + hiddennum + hiddennum * outputnum + 1 : ...inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum);%%  最优值赋值
net.Iw{1, 1} = reshape(w1, hiddennum, inputnum);
net.Lw{2, 1} = reshape(w2, outputnum, hiddennum);
net.b{1}     = reshape(B1, hiddennum, 1);
net.b{2}     = B2';%%  打开训练窗口 
net.trainParam.showWindow = 1;        % 打开窗口%%  网络训练
net = train(net, p_train, t_train);%%  仿真预测
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test );%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%%  绘图
figure
plot(1: M, T_train, 'r-', 1: M, T_sim1, 'b-', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
gridfigure
plot(1: N, T_test, 'r-', 1: N, T_sim2, 'b-', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid%%  误差曲线迭代图
figure
plot(1 : length(BestFit), BestFit, 'LineWidth', 1.5);
xlabel('粒子群迭代次数');
ylabel('适应度值');
xlim([1, length(BestFit)])
string = {'模型迭代误差变化'};
title(string)
grid on%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2)^2 / norm(T_test  - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])%  MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])%  MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

7.运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/9886.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

nsq整体架构及各个部件作用详解

文章目录 前言 nsq的整体架构图 部件&#xff1a;nsqd 部件&#xff1a;nsqlookupd 部件&#xff1a;nsq连接库 部件&#xff1a;nsqadmin 前言 上两篇博客 centos环境搭建nsq单点_YZF_Kevin的博客-CSDN博客 linux环境搭建nsq集群_YZF_Kevin的博客-CSDN博客 我们讲了nsq是…

桥梁安全监测系统中数据采集上传用 什么?

背景 2023年7月6日凌晨时分&#xff0c;G5012恩广高速达万段230公里加80米处6号大桥部分桥面发生垮塌&#xff0c;导致造成2车受损后自燃&#xff0c;3人受轻伤。目前&#xff0c;四川省公安厅交通警察总队高速公路五支队十四大队民警已对现场进行双向管制。 作为世界第一桥梁…

Hadoop 之 Spark 配置与使用(五)

Hadoop 之 Spark 配置与使用 一.Spark 配置1.Spark 下载2.单机测试环境配置3.集群配置 二.Java 访问 Spark1.Pom 依赖2.测试代码1.计算 π 三.Spark 配置 Hadoop1.配置 Hadoop2.测试代码1.统计字符数 一.Spark 配置 环境说明环境版本AnolisAnolis OS release 8.6Jdkjava versi…

mac使用mvn下载node-sass 会Binary download failed, trying source

m1 上使用nvm 以下node的版本可以直接下载&#xff08;Binary download&#xff0c;而不是 trying source&#xff09;而不用切换mac cpu架构 zhiwenwenzhiwenwendeMBP cockpit % nvm install 14.15.5 Downloading and installing node v14.15.5... Downloading https://node…

Windows环境下git客户端中的git-bash和MinGW64

我们在 Windows10 操作系统下&#xff0c;安装了 git 客户端之后&#xff0c;可以通过 git-bash.exe 打开一个 shell&#xff1a; 执行一些 linux 系统里的命令&#xff1a; 注意到上图紫色的 MINGW64. Mingw-w64 是原始 mingw.org 项目的改进版&#xff0c;旨在支持 Window…

SpringCloud学习路线(12)——分布式搜索ElasticSeach数据聚合、自动补全、数据同步

一、数据聚合 聚合&#xff08;aggregations&#xff09;&#xff1a; 实现对文档数据的统计、分析、运算。 &#xff08;一&#xff09;聚合的常见种类 桶&#xff08;Bucket&#xff09;聚合&#xff1a; 用来做文档分组。 TermAggregation&#xff1a; 按照文档字段值分组…

Flutter Windows通过嵌入Native窗口实现渲染视频

Flutter视频渲染系列 第一章 Android使用Texture渲染视频 第二章 Windows使用Texture渲染视频 第三章 Linux使用Texture渲染视频 第四章 全平台FFICustomPainter渲染视频 第五章 Windows使用Native窗口渲染视频&#xff08;本章&#xff09; 文章目录 Flutter视频渲染系列前言…

文心一言大模型测评

访问地址 文心一言服务请求地址&#xff1a;文心千帆大模型 (baidu.com) 新手可以先实名认证后再申请使用 测评 普通对话 这里先和他进行简单的问题讨论 编程相关 询问他有关代码的内容 确实可以生成代码&#xff0c;但不像chatgpt那样提供复制按钮 我们接下来让他生成…

LeetCode45.Jump-Game-II<跳跃游戏II>

题目&#xff1a; 思路&#xff1a; 从上次大神那里获得的灵感 这题问的是次数,那么我们需要确保 1,能否跳到终点 2,得到次数. 第一次条获得的是nums[0],那么第一个数就是我们第一次能跳跃的范围.每次在范围里获得最大值.并且次数加一.然后进入下一次范围;即可得到次数; 代码…

明晚直播:可重构计算芯片的AI创新应用分享!

大模型技术的不断升级及应用落地&#xff0c;正在推动人工智能技术发展进入新的阶段&#xff0c;而智能化快速增长和发展的市场对芯片提出了更高的要求&#xff1a;高算力、高性能、灵活性、安全性。可重构计算区别于传统CPU、GPU&#xff0c;以指令驱动的串行执行方式&#xf…

论文解读|Struck算法:基于结构化输出预测的自适应视觉目标跟踪框架

原创 | 文 BFT机器人 01 背景 本文的背景是关于自适应视觉目标跟踪的研究。在传统的跟踪方法中&#xff0c;通常采用基于检测的方式&#xff0c;即尝试学习一个分类器来区分目标对象和其周围的背景。然而&#xff0c;这种方法存在一些问题&#xff0c;例如需要手动选择特征和参…

深度神经网络基础——深度学习神经网络基础 Tensorflow在深度学习的应用

目录 一、二、Tesnsflow入门 & 环境配置 & 认识Tensorflow三、线程与队列与IO操作神经网络基础知识1.简单神经网络2.卷积神经网络卷积层新的激活函数-Relu池化层(Pooling)计算 案例&#xff1a;Mnist手写数字图片识别卷积网络案例 一、二、Tesnsflow入门 & 环境配置…

SQL AND OR 运算符

AND & OR 运算符用于基于一个以上的条件对记录进行过滤。 如果第一个条件和第二个条件都成立&#xff0c;则 AND 运算符显示一条记录。 如果第一个条件和第二个条件中只要有一个成立&#xff0c;则 OR 运算符显示一条记录。 下面是选自 "students" 表的数据&a…

java 支持jsonschema

入参校验产品化 schema_xsd可视化编辑器_个人渣记录仅为自己搜索用的博客-CSDN博客 jsonchema的生成 支持v4的jackson-jsonSchema GitHub - mbknor/mbknor-jackson-jsonSchema: Generate JSON Schema with Polymorphism using Jackson annotations jackson-module-jsonSchema …

阿里云NVIDIA A100 GPU云服务器性能详解及租用费用

阿里云GPU服务器租用费用表包括包年包月、一个小时收费以及学生GPU服务器租用费用&#xff0c;阿里云GPU计算卡包括NVIDIA V100计算卡、T4计算卡、A10计算卡和A100计算卡&#xff0c;GPU云服务器gn6i可享受3折&#xff0c;阿里云百科分享阿里云GPU服务器租用表、GPU一个小时多少…

各种知名游戏的技术分析

介绍一个GitHub&#xff0c;里面包括了市面上的各种游戏的技术分析&#xff0c;包括渲染管线、工作流、技术文章等等&#xff0c;在做某个类型的游戏的时候&#xff0c;可以针对某个游戏去进行技术参考&#xff0c;特别实用。 GitHub - OTFCG/Awesome-Game-Analysis: a compre…

C++那些事之template disambiguator

template disambiguator 1.背景 最近看到一段代码&#xff1a; auto chunk_left first_sort_key.template GetChunk<ArrayType>(left); 请问&#xff0c;这里的.template代表什么意义&#xff1f; 本节将从实际例子出发&#xff0c;探讨这个意义。 2.template disambigu…

数仓学习---16、可视化报表(Superset)

星光下的赶路人star的个人主页 真正的才智是刚毅的志向 文章目录 1、Superset入门1.1 Superset概述1.2 环境说明 2、Superset安装2.1 安装Python环境2.1.1 安装Miniconda2.1.2 创建Python3.7 环境 2.2 Superset部署2.2.1 安装依赖2.2.2 安装Superset2.2.3 启动Superset2.2.4 Su…

【ARM Coresight 系列文章 10.2 - ARM Coresight STM Trace packets】

文章目录 Trace protocolpacket的种类Error packetsVERSION Packets同步 packet 上篇文章&#xff1a;ARM Coresight 系列文章 10.1 - ARM Coresight STM 介绍及使用 下篇文章&#xff1a;ARM Coresight 系列文章 10.3 - ARM Coresight STM 寄存器介绍 及STM DMA 传输介绍 Trac…

【uni-app2.0】实现登录页记住密码功能

使用uni-app的uni.setStorageSync()和uni.getStorageSync()方法来存储和读取密码 在登录页中添加一个记住密码的u-checkbox选项&#xff0c;并在data里面添加一个rememberPwd的布尔值&#xff0c;在每次点击记住密码change的时候来记录用户的选择 <u-checkbox-group place…