Hadoop 之 Spark 配置与使用(五)

Hadoop 之 Spark 配置与使用

  • 一.Spark 配置
    • 1.Spark 下载
    • 2.单机测试环境配置
    • 3.集群配置
  • 二.Java 访问 Spark
    • 1.Pom 依赖
    • 2.测试代码
      • 1.计算 π
  • 三.Spark 配置 Hadoop
    • 1.配置 Hadoop
    • 2.测试代码
      • 1.统计字符数

一.Spark 配置

环境说明
环境版本
AnolisAnolis OS release 8.6
Jdkjava version “11.0.19” 2023-04-18 LTS
Spark3.4.1

1.Spark 下载

Spark 下载

在这里插入图片描述

2.单机测试环境配置

## 1.创建目录
mkdir -p /usr/local/spark
## 2.解压 sprak 到指定目录
tar -zxvf spark-3.4.1-bin-hadoop3.tgz -C /usr/local/spark/
## 3.进入安装目录(可将解压后文件夹重命名为 spark 即可)
cd /usr/local/spark/spark-3.4.1-bin-hadoop3/
## 4.修改环境变量并更新
echo 'export SPARK_HOME=/usr/local/spark/spark-3.4.1-bin-hadoop3' >> /etc/profile
echo 'PATH=${SPARK_HOME}/bin:${PATH}' >> /etc/profile
source /etc/profile
## 5.复制 spark 配置
cd $SPARK_HOME/conf
cp spark-env.sh.template spark-env.sh
## 6.测试
cd  $SPARK_HOME/bin
./run-example SparkPi

在这里插入图片描述

## 1.启动
./spark-shell

在这里插入图片描述

UI访问:控制打印地址为虚拟机域名,Windows 未添加 Host 解析,直接通过IP地址访问

在这里插入图片描述

在这里插入图片描述

## 1.停止
scala> :quit

在这里插入图片描述

## 1.交互分析
cd $SPARK_HOME/bin
cat /home/test.txt
./spark-shell
## 2.取文件
var file=sc.textFile("file:///home/test.txt")
## 3.打印行数和第一行信息
file.count()
file.first()
## 4.过滤
var hello=file.filter(line=>line.contains("Hello"))
hello.count()

在这里插入图片描述

3.集群配置

域名地址类别
nn192.168.1.6master
nd1192.168.1.7slave
nd2192.168.1.8slave

同单机配置,在 nd1 、nd2 部署 spark,并设置环境变量(也可利用 scp 命令将住节点下配置好的文件拷贝到从节点)

## 1.修改 nn 配置(此处旧版本为 slave)
cd $SPARK_HOME/conf
cp workers.template workers
vim workers
## 2.添加主从节点域名
echo 'nn' >> workers
echo 'nd1' >> workers
echo 'nd2' >> workers
## 3.保存并将配置文件分发到 nd1、nd2
scp workers root@nd1:$SPARK_HOME/conf/
scp workers root@nd2:$SPARK_HOME/conf/
## 4.增加 spark 配置
echo 'export JAVA_HOME=/usr/local/java/jdk-11.0.19/' >> spark-env.sh
echo 'export SPARK_MASTER_HOST=nn' >> spark-env.sh
echo 'export SPARK_MASTER_PORT=7077' >> spark-env.sh
## 5.将配置分发到 nd1、nd2
scp spark-env.sh root@nd1:$SPARK_HOME/conf/
scp spark-env.sh root@nd2:$SPARK_HOME/conf/

workers 文件配置内容如下

在这里插入图片描述

## 1.修改 host 将本机域名与IP地址绑定
vim /etc/hosts
## 2.启动
cd $SPARK_HOME/sbin/
./start-all.sh
## 3.停止
./stop-all.sh

Host 配置
在这里插入图片描述

启动日志

在这里插入图片描述

查看集群 UI:http://192.168.1.6:8080/

在这里插入图片描述

二.Java 访问 Spark

当前测试环境为 VM Ware 虚拟机,本地为 WIN 10 IDEA 
调试问题记录:
  • Spark 回调本机超时,Win 防火墙未关闭,端口不通
  • Lamdba 语法 cannot assign instance of java.lang.invoke.SerializedLambda,本地 Jdk 版本和 Spark 集群环境 Jdk 版本要一致
  • String Serialized 序列化问题,Java 依赖包和 Spark Jar 包版本要一致
  • Jdk 版本过高,某些类解析提示 unnamed,可以在 IDEA 启动命令配置上:–add-exports java.base/sun.nio.ch=ALL-UNNAMED
  • 域名 由于虚拟机原因,本机存在虚拟网卡,虚拟机内访问本地会通过域名(默认本地主机名)访问,要注意服务回调端口绑定的地址是虚拟网卡地址还是真实网卡地址,并将该地址配置配置到虚拟机的 Hosts | Linux 配置域名解析 vim /etc/hosts

在这里插入图片描述

1.Pom 依赖

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>org.example</groupId><artifactId>spark-demo</artifactId><version>1.0-SNAPSHOT</version><packaging>jar</packaging><properties><maven.compiler.source>11</maven.compiler.source><maven.compiler.target>11</maven.compiler.target><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding></properties><dependencies><dependency><groupId>org.apache.spark</groupId><artifactId>spark-core_2.12</artifactId><version>3.4.1</version></dependency><dependency><groupId>org.apache.spark</groupId><artifactId>spark-sql_2.12</artifactId><version>3.4.1</version></dependency></dependencies><build><finalName>mySpark</finalName></build>
</project>

2.测试代码

1.计算 π

package org.example;import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;import static org.apache.spark.sql.functions.col;/*** @author Administrator*/
public class SparkApp {public static void main(String[] args) throws Exception {SparkConf conf = new SparkConf().setAppName("MySpark")//远程连接时需要将本地包分发到 worker 否则可能报错: cannot assign instance of java.lang.invoke.SerializedLambda.setJars(new String[]{"E:\\IdeaProjects\\spark-demo\\target\\mySpark.jar"}).setMaster("spark://192.168.1.6:7077");JavaSparkContext jsc = new JavaSparkContext(conf);getPi(jsc);}/*** 计算 pi* 即(0,1)随机数落在 1/4 圆占单位正方形的概率 => (1/4 * (Pi*1^2))/(1^2) => Pi/4 = count/numSamples*/public static void getPi(JavaSparkContext jsc){int numSamples = 1000000;List<Integer> l = new ArrayList<>(numSamples);for (int i = 0; i < numSamples; i++) {l.add(i);}//统计命中数long count = jsc.parallelize(l).filter(i -> {double x = Math.random();double y = Math.random();return x*x + y*y < 1;}).count();System.out.println("Pi is roughly " + 4.0 * count / numSamples);}
}

在这里插入图片描述

三.Spark 配置 Hadoop

1.配置 Hadoop

## 1.停止 spark 服务 修改主节点 spark 配置(基于前面教程搭建的 Hadoop 集群)
echo 'export HADOOP_CONF_DIR=/usr/local/hadoop/hadoop-3.3.6/etc/hadoop' >> $SPARK_HOME/conf/spark-env.sh
## 2.启动 Hadoop 服务
$HADOOP_HOME/sbin/start-all.sh
## 3.启动 Spark 服务
$SPARK_HOME/sbin/start-all.sh
## 4.查看 Hadoop 文件
hadoop fs -cat /log/test.txt

在这里插入图片描述

2.测试代码

1.统计字符数

package org.example;import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;/*** @author Administrator*/
public class SparkApp {public static void main(String[] args) throws Exception {SparkConf conf = new SparkConf().setAppName("MySpark")//远程连接时需要将本地包分发到 worker 否则可能报错: cannot assign instance of java.lang.invoke.SerializedLambda.setJars(new String[]{"E:\\IdeaProjects\\spark-demo\\target\\mySpark.jar"}).setMaster("spark://192.168.1.6:7077");JavaSparkContext jsc = new JavaSparkContext(conf);dataFrame(jsc);}/*** DataFrame API examples*/public static void dataFrame(JavaSparkContext jsc){// Creates a DataFrame having a single column named "line"JavaRDD<String> lines = jsc.textFile("hdfs://192.168.1.6:9000/log/test.txt");JavaRDD<Integer> lineLengths = lines.map(s -> s.length());int totalLength = lineLengths.reduce((a, b) -> a + b);System.out.println(totalLength);}}

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/9883.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mac使用mvn下载node-sass 会Binary download failed, trying source

m1 上使用nvm 以下node的版本可以直接下载&#xff08;Binary download&#xff0c;而不是 trying source&#xff09;而不用切换mac cpu架构 zhiwenwenzhiwenwendeMBP cockpit % nvm install 14.15.5 Downloading and installing node v14.15.5... Downloading https://node…

Windows环境下git客户端中的git-bash和MinGW64

我们在 Windows10 操作系统下&#xff0c;安装了 git 客户端之后&#xff0c;可以通过 git-bash.exe 打开一个 shell&#xff1a; 执行一些 linux 系统里的命令&#xff1a; 注意到上图紫色的 MINGW64. Mingw-w64 是原始 mingw.org 项目的改进版&#xff0c;旨在支持 Window…

SpringCloud学习路线(12)——分布式搜索ElasticSeach数据聚合、自动补全、数据同步

一、数据聚合 聚合&#xff08;aggregations&#xff09;&#xff1a; 实现对文档数据的统计、分析、运算。 &#xff08;一&#xff09;聚合的常见种类 桶&#xff08;Bucket&#xff09;聚合&#xff1a; 用来做文档分组。 TermAggregation&#xff1a; 按照文档字段值分组…

Flutter Windows通过嵌入Native窗口实现渲染视频

Flutter视频渲染系列 第一章 Android使用Texture渲染视频 第二章 Windows使用Texture渲染视频 第三章 Linux使用Texture渲染视频 第四章 全平台FFICustomPainter渲染视频 第五章 Windows使用Native窗口渲染视频&#xff08;本章&#xff09; 文章目录 Flutter视频渲染系列前言…

文心一言大模型测评

访问地址 文心一言服务请求地址&#xff1a;文心千帆大模型 (baidu.com) 新手可以先实名认证后再申请使用 测评 普通对话 这里先和他进行简单的问题讨论 编程相关 询问他有关代码的内容 确实可以生成代码&#xff0c;但不像chatgpt那样提供复制按钮 我们接下来让他生成…

LeetCode45.Jump-Game-II<跳跃游戏II>

题目&#xff1a; 思路&#xff1a; 从上次大神那里获得的灵感 这题问的是次数,那么我们需要确保 1,能否跳到终点 2,得到次数. 第一次条获得的是nums[0],那么第一个数就是我们第一次能跳跃的范围.每次在范围里获得最大值.并且次数加一.然后进入下一次范围;即可得到次数; 代码…

明晚直播:可重构计算芯片的AI创新应用分享!

大模型技术的不断升级及应用落地&#xff0c;正在推动人工智能技术发展进入新的阶段&#xff0c;而智能化快速增长和发展的市场对芯片提出了更高的要求&#xff1a;高算力、高性能、灵活性、安全性。可重构计算区别于传统CPU、GPU&#xff0c;以指令驱动的串行执行方式&#xf…

论文解读|Struck算法:基于结构化输出预测的自适应视觉目标跟踪框架

原创 | 文 BFT机器人 01 背景 本文的背景是关于自适应视觉目标跟踪的研究。在传统的跟踪方法中&#xff0c;通常采用基于检测的方式&#xff0c;即尝试学习一个分类器来区分目标对象和其周围的背景。然而&#xff0c;这种方法存在一些问题&#xff0c;例如需要手动选择特征和参…

深度神经网络基础——深度学习神经网络基础 Tensorflow在深度学习的应用

目录 一、二、Tesnsflow入门 & 环境配置 & 认识Tensorflow三、线程与队列与IO操作神经网络基础知识1.简单神经网络2.卷积神经网络卷积层新的激活函数-Relu池化层(Pooling)计算 案例&#xff1a;Mnist手写数字图片识别卷积网络案例 一、二、Tesnsflow入门 & 环境配置…

SQL AND OR 运算符

AND & OR 运算符用于基于一个以上的条件对记录进行过滤。 如果第一个条件和第二个条件都成立&#xff0c;则 AND 运算符显示一条记录。 如果第一个条件和第二个条件中只要有一个成立&#xff0c;则 OR 运算符显示一条记录。 下面是选自 "students" 表的数据&a…

java 支持jsonschema

入参校验产品化 schema_xsd可视化编辑器_个人渣记录仅为自己搜索用的博客-CSDN博客 jsonchema的生成 支持v4的jackson-jsonSchema GitHub - mbknor/mbknor-jackson-jsonSchema: Generate JSON Schema with Polymorphism using Jackson annotations jackson-module-jsonSchema …

阿里云NVIDIA A100 GPU云服务器性能详解及租用费用

阿里云GPU服务器租用费用表包括包年包月、一个小时收费以及学生GPU服务器租用费用&#xff0c;阿里云GPU计算卡包括NVIDIA V100计算卡、T4计算卡、A10计算卡和A100计算卡&#xff0c;GPU云服务器gn6i可享受3折&#xff0c;阿里云百科分享阿里云GPU服务器租用表、GPU一个小时多少…

各种知名游戏的技术分析

介绍一个GitHub&#xff0c;里面包括了市面上的各种游戏的技术分析&#xff0c;包括渲染管线、工作流、技术文章等等&#xff0c;在做某个类型的游戏的时候&#xff0c;可以针对某个游戏去进行技术参考&#xff0c;特别实用。 GitHub - OTFCG/Awesome-Game-Analysis: a compre…

C++那些事之template disambiguator

template disambiguator 1.背景 最近看到一段代码&#xff1a; auto chunk_left first_sort_key.template GetChunk<ArrayType>(left); 请问&#xff0c;这里的.template代表什么意义&#xff1f; 本节将从实际例子出发&#xff0c;探讨这个意义。 2.template disambigu…

数仓学习---16、可视化报表(Superset)

星光下的赶路人star的个人主页 真正的才智是刚毅的志向 文章目录 1、Superset入门1.1 Superset概述1.2 环境说明 2、Superset安装2.1 安装Python环境2.1.1 安装Miniconda2.1.2 创建Python3.7 环境 2.2 Superset部署2.2.1 安装依赖2.2.2 安装Superset2.2.3 启动Superset2.2.4 Su…

【ARM Coresight 系列文章 10.2 - ARM Coresight STM Trace packets】

文章目录 Trace protocolpacket的种类Error packetsVERSION Packets同步 packet 上篇文章&#xff1a;ARM Coresight 系列文章 10.1 - ARM Coresight STM 介绍及使用 下篇文章&#xff1a;ARM Coresight 系列文章 10.3 - ARM Coresight STM 寄存器介绍 及STM DMA 传输介绍 Trac…

【uni-app2.0】实现登录页记住密码功能

使用uni-app的uni.setStorageSync()和uni.getStorageSync()方法来存储和读取密码 在登录页中添加一个记住密码的u-checkbox选项&#xff0c;并在data里面添加一个rememberPwd的布尔值&#xff0c;在每次点击记住密码change的时候来记录用户的选择 <u-checkbox-group place…

基于java的坦克大战游戏的设计与实现--毕业论文--【毕业论文】

文章目录 本系列校训毕设的技术铺垫文章主体层次摘要&#xff1a;示例摘要的写法 引言&#xff1a;系统分析总体设计总体功能总体功能如图1所示坦克大战总体流程图 详细设计游戏测试结论参考文献参考文献 配套资源 本系列校训 互相伤害互相卷&#xff0c;玩命学习要你管&#…

Linux磁盘管理命令

目录 1. du (disk usage文件和目录占用的磁盘空间) 2. df (disk free 查看磁盘使用情况) 3. lsblk(list block查看块设备挂载情况) 1. du (disk usage文件和目录占用的磁盘空间) du [-ahskm] 目录/文件&#xff08;文件大小可以直接使用ll查看&#xff09; 选项与参数&a…

(八九)如何与InfluxDB交互InfluxDB HTTP API

以下内容来自 尚硅谷&#xff0c;写这一系列的文章&#xff0c;主要是为了方便后续自己的查看&#xff0c;不用带着个PDF找来找去的&#xff0c;太麻烦&#xff01; 第 8 章 前言&#xff1a;如何与InfluxDB交互 1、InfluxDB启动后&#xff0c;会向外提供一套HTTP API。外部程…