深度神经网络基础——深度学习神经网络基础 Tensorflow在深度学习的应用

目录

  • 一、二、Tesnsflow入门 & 环境配置 & 认识Tensorflow
  • 三、线程与队列与IO操作
  • 神经网络基础知识
    • 1.简单神经网络
    • 2.卷积神经网络
      • 卷积层
      • 新的激活函数-Relu
      • 池化层(Pooling)计算
  • 案例:Mnist手写数字图片识别卷积网络案例


一、二、Tesnsflow入门 & 环境配置 & 认识Tensorflow

Tensorflow入门(1)——深度学习框架Tesnsflow入门 & 环境配置 & 认识Tensorflow

在这里插入图片描述

三、线程与队列与IO操作

深度学习框架Tesnsflow & 线程+队列+IO操作 & 文件读取案例

在这里插入图片描述

神经网络基础知识

神经网络的种类:
基础神经网络:单层感知器,线性神经网络,BP神经网络,Hopfield神经网络等
进阶神经网络:玻尔兹曼机,受限玻尔兹曼机,递归神经网络等
深度神经网络:深度置信网络,卷积神经网络,循环神经网络,LSTM网络等
• 结构(Architecture)例如,神经网络中的变量可以是神经元连接的权重
• 激励函数(Activity Rule)大部分神经网络模型具有一个短时间尺度的动力学规则,来定义神经元如何根据其他神经元的活动来改变自己的激励值。
• 学习规则(Learning Rule)学习规则指定了网络中的权重如何随着时间推进而调整。(反向传播算法)

在这里插入图片描述

在这里插入图片描述

损失计算-交叉熵损失公式

在这里插入图片描述

1.简单神经网络

在这里插入图片描述

http://yann.lecun.com/exdb/mnist/

在这里插入图片描述

TensorFlow的代码

import tensorflow as tf
old_v = tf.logging.get_verbosity()
tf.logging.set_verbosity(tf.logging.ERROR)
from tensorflow.examples.tutorials.mnist import input_data
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_integer("is_train", 1, "指定程序是预测还是训练")def full_connected():# 获取真实的数据mnist = input_data.read_data_sets("./data/mnist/", one_hot=True)tf.logging.set_verbosity(old_v)# 1、建立数据的占位符 x [None, 784]    y_true [None, 10]with tf.variable_scope("data"): # 作用域x = tf.placeholder(tf.float32, [None, 784])y_true = tf.placeholder(tf.int32, [None, 10])# 2、建立一个全连接层的神经网络 w [784, 10]   b [10]with tf.variable_scope("fc_model"):# 随机初始化权重和偏置weight = tf.Variable(tf.random_normal([784, 10], mean=0.0, stddev=1.0), name="w")bias = tf.Variable(tf.constant(0.0, shape=[10]))# 预测None个样本的输出结果matrix [None, 784]* [784, 10] + [10] = [None, 10]y_predict = tf.matmul(x, weight) + bias# 3、求出所有样本的损失,然后求平均值with tf.variable_scope("soft_cross"):# 求平均交叉熵损失loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_predict))# 4、梯度下降求出损失with tf.variable_scope("optimizer"):train_op = tf.train.GradientDescentOptimizer(0.1).minimize(loss)# 学习率和最小化损失# 5、计算准确率with tf.variable_scope("acc"):equal_list = tf.equal(tf.argmax(y_true, 1), tf.argmax(y_predict, 1))# equal_list  None个样本   [1, 0, 1, 0, 1, 1,..........]accuracy = tf.reduce_mean(tf.cast(equal_list, tf.float32))# 收集变量 单个数字值收集tf.summary.scalar("losses", loss)tf.summary.scalar("acc", accuracy)# 高纬度变量收集tf.summary.histogram("weightes", weight)tf.summary.histogram("biases", bias)# 定义一个初始化变量的opinit_op = tf.global_variables_initializer()# 定义一个合并变量的 opmerged = tf.summary.merge_all()# 创建一个saversaver = tf.train.Saver()   # 开启会话去训练with tf.Session() as sess:# 初始化变量sess.run(init_op)# 建立events文件,然后写入filewriter = tf.summary.FileWriter("./tmp/summary/test/", graph=sess.graph)if FLAGS.is_train == 1:# 如果是1,进行训练# 迭代步数去训练,更新参数预测for i in range(2000):# 取出真实存在的特征值和目标值mnist_x, mnist_y = mnist.train.next_batch(50)# 运行train_op训练sess.run(train_op, feed_dict={x: mnist_x, y_true: mnist_y})# 写入每步训练的值summary = sess.run(merged, feed_dict={x: mnist_x, y_true: mnist_y})filewriter.add_summary(summary, i)print("训练第%d步,准确率为:%f" % (i, sess.run(accuracy, feed_dict={x: mnist_x, y_true: mnist_y})))# 保存模型saver.save(sess, "./tmp/ckpt/fc_model")else:# 如果是0,做出预测# 加载模型saver.restore(sess, "./tmp/ckpt/fc_model")# 如果是0,做出预测for i in range(100):# 每次测试一张图片 [0,0,0,0,0,1,0,0,0,0]x_test, y_test = mnist.test.next_batch(1)print("第%d张图片,手写数字图片目标是:%d, 预测结果是:%d" % (i,tf.argmax(y_test, 1).eval(),tf.argmax(sess.run(y_predict, feed_dict={x: x_test, y_true: y_test}), 1).eval()))return Noneif __name__ == "__main__":full_connected()

2.卷积神经网络

在这里插入图片描述

神经网络的进化

在这里插入图片描述
神经网络(neural networks)的基本组成包括输入层、隐藏层、输出层。而卷积神经网络的特点在于隐藏层分为卷积层和池化层(pooling layer,又叫下采样层)。

  • 卷积层:通过在原始图像上平移来提取特征,每一个特征就是一个特征映射
  • 池化层:通过特征后稀疏参数来减少学习的参数,降低网络的复杂度,(最大池化和平均池化)

在这里插入图片描述

结构示意图

在这里插入图片描述
零填充:
• 卷积核在提取特征映射时的动作称之为padding(零填充),由于移动步长不一定能整除整张图的像素宽度。其中有两种方式,SAME和VALID

  1. SAME:越过边缘取样,取样的面积和输入图像的像素宽度一致。
  2. VALID:不越过边缘取样,取样的面积小于输入人的图像的像素宽度

卷积层

tf.nn.conv2d(input, filter, strides=, padding=, name=None)
计算给定4-D input和filter张量的2维卷积
input:给定的输入张量,具有[batch,heigth,width,
channel],类型为float32,64
filter:指定过滤器的大小,[filter_height, filter_width, in_channels, out_channels]
strides:strides = [1, stride, stride, 1],步长
padding:“SAME”, “VALID”,使用的填充算法的类型,使用“SAME”。其中”VALID”表示滑动超出部分舍弃,“SAME”表示填充,使得变化后height,width一样大

在这里插入图片描述

新的激活函数-Relu

在这里插入图片描述

第一,采用sigmoid等函数,反向传播求误差梯度时,计算量相对大,而采用Relu激活函数,整个过程的计算量节省很多

第二,对于深层网络,sigmoid函数反向传播时,很容易就会出现梯度消失的情况(求不出权重和偏置)

激活函数:
tf.nn.relu(features, name=None)
features:卷积后加上偏置的结果
return:结果

池化层(Pooling)计算

Pooling层主要的作用是特征提取,通过去掉Feature Map中不重要的样本,进一步减少参数数量。Pooling的方法很多,最常用的是Max Pooling。

在这里插入图片描述
在这里插入图片描述
池化:
tf.nn.max_pool(value, ksize=, strides=, padding=,name=None)
输入上执行最大池数
value:4-D Tensor形状[batch, height, width, channels]
ksize:池化窗口大小,[1, ksize, ksize, 1]
strides:步长大小,[1,strides,strides,1]
padding:“SAME”, “VALID”,使用的填充算法的类型,使用“SAME”

Full Connected层:
分析:前面的卷积和池化相当于做特征工程,后面的全连接相当于做特征加权。最后的全连接层在整个卷积神经网络中起到“分类器”的作用。

案例:Mnist手写数字图片识别卷积网络案例

流程:
1、准备数据
2、卷积、激活、池化(两层)
3、全连接层
4、计算准确率

import tensorflow as tf
old_v = tf.logging.get_verbosity()
tf.logging.set_verbosity(tf.logging.ERROR)
from tensorflow.examples.tutorials.mnist import input_data
# 定义一个初始化权重的函数
def weight_variable(shape):w = tf.Variable(tf.random_normal(shape=shape,mean=0.0,stddev=1.0))return w
# 定义一个初始化偏置的函数
def bias_variable(shape):b = tf.Variable(tf.constant(0.0,shape=shape))return b
def model():'''自定义的卷积模型:return:'''# 1、准备数据的占位符  x [None, 784]    y_true [None, 10]with tf.variable_scope("data"): # 作用域x = tf.placeholder(tf.float32, [None, 784])y_true = tf.placeholder(tf.int32, [None, 10])# 2、一卷积层 卷积 5x5x1,32个,strides=1##   激活 tf.nn.relu,池化with tf.variable_scope("conv1"):  # 作用域# 随机初始化权重,偏置w_conv1 = weight_variable([5,5,1,32])b_conv1 = bias_variable([32])# 对 x进行形状的改变 [none,784]  ---> [none,28,28,1]x_reshape = tf.reshape(x,[-1,28,28,1])# 卷积 [none,28,28,1] ---> [none,28,28,32]x_relu = tf.nn.relu(tf.nn.conv2d(x_reshape,w_conv1,strides=[1,1,1,1],padding="SAME") + b_conv1)# 池化 2x2,strides=2[none,28,28,32]---> [none,14,14,32]x_pool1 = tf.nn.max_pool(x_relu, ksize=[1,2,2,1],strides=[1,2,2,1], padding="SAME")# 3、二卷积层       卷积 5x5x32,64个,strides=1#             ##   激活 tf.nn.relu,池化# 随机初始化权重[5, 5, 32, 64],偏置w_conv2 = weight_variable([5, 5, 32, 64])b_conv2 = bias_variable([64])# 卷积,激活,池化计算# [none,14,14,32] ---> [none,14,14,64]x_relu2 = tf.nn.relu(tf.nn.conv2d(x_pool1, w_conv2, strides=[1, 1, 1, 1], padding="SAME") + b_conv2)# 池化 2x2,strides=2[none,14,14,64]---> [none,7,7,64]x_pool2 = tf.nn.max_pool(x_relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")# 4、全连接层 [none,7,7,64]---> [none,7*7*64]*[7*7*64,10] +[10] = [none,10]with tf.variable_scope("conv2"):  # 作用域none,# 随机初始化权重,偏置w_fc = weight_variable([7*7*64, 10])b_fc = bias_variable([10])# 修改形状 [none,7,7,64]---> [none,7*7*64],四维到二维x_fc_reshape = tf.reshape(x_pool2,[-1,7*7*64])# 矩阵运算得出每个样本的10个结果y_predict = tf.matmul(x_fc_reshape, w_fc) + b_fcreturn  x , y_true ,y_predictdef conv_fc():#获取真实数据mnist = input_data.read_data_sets("./data/mnist/", one_hot=True)# 定义模型,得出输出x, y_true, y_predict = model()# 进行交叉熵损失计算with tf.variable_scope("soft_cross"):# 求平均交叉熵损失loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_predict))# 4、梯度下降求出损失 学习率要比较小with tf.variable_scope("optimizer"):train_op = tf.train.GradientDescentOptimizer(0.0001).minimize(loss)# 学习率和最小化损失# 5、计算准确率with tf.variable_scope("acc"):equal_list = tf.equal(tf.argmax(y_true, 1), tf.argmax(y_predict, 1))# equal_list  None个样本   [1, 0, 1, 0, 1, 1,..........]accuracy = tf.reduce_mean(tf.cast(equal_list, tf.float32))# 定义一个初始化变量 opinit_op = tf.global_variables_initializer()# 开启会话去训练with tf.Session() as sess:# 初始化变量sess.run(init_op)# 循环训练for i in range(1000):# 取出真实存在的特征值和目标值mnist_x, mnist_y = mnist.train.next_batch(50)# 运行train_op训练sess.run(train_op, feed_dict={x: mnist_x, y_true: mnist_y})print("训练第%d步,准确率为:%f" % (i, sess.run(accuracy, feed_dict={x: mnist_x, y_true: mnist_y})))return Noneif __name__ == "__main__":conv_fc()

GoogleNet:

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/9867.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SQL AND OR 运算符

AND & OR 运算符用于基于一个以上的条件对记录进行过滤。 如果第一个条件和第二个条件都成立,则 AND 运算符显示一条记录。 如果第一个条件和第二个条件中只要有一个成立,则 OR 运算符显示一条记录。 下面是选自 "students" 表的数据&a…

java 支持jsonschema

入参校验产品化 schema_xsd可视化编辑器_个人渣记录仅为自己搜索用的博客-CSDN博客 jsonchema的生成 支持v4的jackson-jsonSchema GitHub - mbknor/mbknor-jackson-jsonSchema: Generate JSON Schema with Polymorphism using Jackson annotations jackson-module-jsonSchema …

阿里云NVIDIA A100 GPU云服务器性能详解及租用费用

阿里云GPU服务器租用费用表包括包年包月、一个小时收费以及学生GPU服务器租用费用,阿里云GPU计算卡包括NVIDIA V100计算卡、T4计算卡、A10计算卡和A100计算卡,GPU云服务器gn6i可享受3折,阿里云百科分享阿里云GPU服务器租用表、GPU一个小时多少…

各种知名游戏的技术分析

介绍一个GitHub,里面包括了市面上的各种游戏的技术分析,包括渲染管线、工作流、技术文章等等,在做某个类型的游戏的时候,可以针对某个游戏去进行技术参考,特别实用。 GitHub - OTFCG/Awesome-Game-Analysis: a compre…

C++那些事之template disambiguator

template disambiguator 1.背景 最近看到一段代码&#xff1a; auto chunk_left first_sort_key.template GetChunk<ArrayType>(left); 请问&#xff0c;这里的.template代表什么意义&#xff1f; 本节将从实际例子出发&#xff0c;探讨这个意义。 2.template disambigu…

数仓学习---16、可视化报表(Superset)

星光下的赶路人star的个人主页 真正的才智是刚毅的志向 文章目录 1、Superset入门1.1 Superset概述1.2 环境说明 2、Superset安装2.1 安装Python环境2.1.1 安装Miniconda2.1.2 创建Python3.7 环境 2.2 Superset部署2.2.1 安装依赖2.2.2 安装Superset2.2.3 启动Superset2.2.4 Su…

【ARM Coresight 系列文章 10.2 - ARM Coresight STM Trace packets】

文章目录 Trace protocolpacket的种类Error packetsVERSION Packets同步 packet 上篇文章&#xff1a;ARM Coresight 系列文章 10.1 - ARM Coresight STM 介绍及使用 下篇文章&#xff1a;ARM Coresight 系列文章 10.3 - ARM Coresight STM 寄存器介绍 及STM DMA 传输介绍 Trac…

【uni-app2.0】实现登录页记住密码功能

使用uni-app的uni.setStorageSync()和uni.getStorageSync()方法来存储和读取密码 在登录页中添加一个记住密码的u-checkbox选项&#xff0c;并在data里面添加一个rememberPwd的布尔值&#xff0c;在每次点击记住密码change的时候来记录用户的选择 <u-checkbox-group place…

基于java的坦克大战游戏的设计与实现--毕业论文--【毕业论文】

文章目录 本系列校训毕设的技术铺垫文章主体层次摘要&#xff1a;示例摘要的写法 引言&#xff1a;系统分析总体设计总体功能总体功能如图1所示坦克大战总体流程图 详细设计游戏测试结论参考文献参考文献 配套资源 本系列校训 互相伤害互相卷&#xff0c;玩命学习要你管&#…

Linux磁盘管理命令

目录 1. du (disk usage文件和目录占用的磁盘空间) 2. df (disk free 查看磁盘使用情况) 3. lsblk(list block查看块设备挂载情况) 1. du (disk usage文件和目录占用的磁盘空间) du [-ahskm] 目录/文件&#xff08;文件大小可以直接使用ll查看&#xff09; 选项与参数&a…

(八九)如何与InfluxDB交互InfluxDB HTTP API

以下内容来自 尚硅谷&#xff0c;写这一系列的文章&#xff0c;主要是为了方便后续自己的查看&#xff0c;不用带着个PDF找来找去的&#xff0c;太麻烦&#xff01; 第 8 章 前言&#xff1a;如何与InfluxDB交互 1、InfluxDB启动后&#xff0c;会向外提供一套HTTP API。外部程…

QT【day1】

登录框&#xff1a; #include "mainwindow.h"MainWindow::MainWindow(QWidget *parent): QMainWindow(parent) {//窗口设置this->setFixedSize(600,600); //大小this->setWindowTitle("MUMU"); //文本内容this->setWindowOpacity(0.8); //透…

力扣 -- 978. 最长湍流子数组

一、题目 二、解题步骤 下面是用动态规划的思想解决这道题的过程&#xff0c;相信各位小伙伴都能看懂并且掌握这道经典的动规题目滴。 三、参考代码 class Solution { public:int maxTurbulenceSize(vector<int>& nums) {int nnums.size();vector<int> f(n);…

k8s中强制删除pv

K8s 集群内有一个已经不再使用的 PV&#xff0c;虽然已经删除了与其关联的 Pod 及 PVC&#xff0c;并对其执行了删除命令&#xff0c;但仍无法正常删除&#xff0c;一直处于 Terminating 状态&#xff1a; 解决办法&#xff1a; 1. 获取pv信息 kubectl get pv 2. 解除pv锁定 …

对话商汤王晓刚:“百模大战”下半场,如何才能突出重围?

点击关注 文 | 姚悦 今年最早发布的那批大模型&#xff0c;现在怎么样了&#xff1f; 近期&#xff0c;商汤科技宣布“商汤日日新SenseNova”大模型体系完成了第一次重大迭代。这距离其发布过去3个月时间。 “每天不断接到用户调用&#xff0c;收到建议反馈后&#xff0c;每隔…

QT实现用户登录注册功能

本文实例为大家分享了QT实现用户登录注册的具体代码&#xff0c;供大家参考&#xff0c;具体内容如下 1、login.h ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 #ifndef LOGIN_H #define LOGIN_H #include <QWidget> namespace Ui { c…

全面防护!Fortinet发布混合式部署防火墙HMF

在企业IT复杂性日益增长、网络安全威胁日趋紧迫、网络安全设施可维护性逐渐降低的背景下&#xff0c;企业迫切寻求可无缝跨越所有IT区域&#xff0c;有效简化企业防护架构的统一解决方案。近日&#xff0c; Fortinet Accelerate 2023中国区15城巡展圆满落幕&#xff0c;在收官之…

【深度学习之YOLO8】视频流推断

官方V8模型下载 需要准备两个东西 simsun.ttc字体包YOLOv8官方模型成品 ScreenCapture屏幕图像类 import cv2 import mss import numpy as npclass ScreenCapture:"""parameters----------screen_resolution : Tuple[int, int]屏幕宽高&#xff0c;分别为x&a…

【文献分享】比目前最先进的模型轻30%!高效多机器人SLAM蒸馏描述符!

论文题目&#xff1a;Descriptor Distillation for Efficient Multi-Robot SLAM 中文题目&#xff1a;高效多机器人SLAM蒸馏描述符 作者&#xff1a;Xiyue Guo, Junjie Hu, Hujun Bao and Guofeng Zhang 作者机构&#xff1a;浙江大学CAD&CG国家重点实验室 香港中文大学…

Vue系列第四篇:Vue2 + Element开发登录页面

Vue开发中Element是一个比较受欢迎的界面库&#xff0c;实际开发中Vue2搭配Element UI开发&#xff0c;Vue3搭配Element plus开发&#xff0c;今天就用Vue2 Element来开发登录页面。 目录 1.Element UI介绍 1.1官网 1.2element-ui安装 2.开发环境准备 2.1core-js安装 2…