数据结构之带头双向循环链表

目录

链表的分类

带头双向循环链表的实现

带头双向循环链表的结构

带头双向循环链表的结构示意图

空链表结构示意图

单结点链表结构示意图

 多结点链表结构示意图

链表创建结点

双向链表初始化

销毁双向链表

打印双向链表

 双向链表尾插

尾插函数测试

双向链表头插

头插函数测试

 双向链表尾删

尾删函数测试

双向链表头删

头删函数测试

双向链表查找

双向链表pos位置前插

插入函数测试

 双向链表删除pos位置的结点

删除函数测试

利用 ListInsert()函数改造头插尾插函数

尾插函数改造版本

头插函数改造版本

利用ListEarse()函数改造头删 尾删函数

头删函数改造版本

尾删函数改造版本

计算双向链表长度


链表的分类

  • 单向/双向

单向列表:每一个结点结构中只保存下一结点的地址,所以很难从后一结点找到前一节点;

双向列表:每一个结点结构中不仅保存下一结点的地址,还保存上一节点的地址;方便寻找前一节点和后一节点;

 

  • 带头/不带头

带头:在头结点之前有一个哨兵位结点,哨兵位的数据域不存储有效数据,指针域指向头结点

不带头:没有哨兵位结点,尾插尾删考虑头结点情况;

 

  • 循环/非循环

循环:头结点与尾结点相连;

非循环:头结点与尾结点不相连;

上述情况相互组合,共有8种情况,  实际中使用的链表数据结构,都是带头双向循环链表,带头双向循环链表虽然结构复杂,但是其结构具有很多优势,实现反而简单;

带头双向循环链表的实现

带头双向循环链表的结构

typedef int LTDataType;
typedef struct ListNode
{struct ListNode* prev;//前址域-存放前一个结点的地址LTDataType data;//数据域struct ListNode* next;//后址域-存放后一个结点的地址
}ListNode;

逻辑图:

物理图:

带头双向循环链表的结构示意图

  • 空链表结构示意图

由图可知,head->prev=head; head->next=head;

  • 单结点链表结构示意图

由图可知:

head->next=FirstNode;

head->prev=FirstNode;

FirstNode->prev=head;

FirstNode->next=head;

  •  多结点链表结构示意图

由图可知:

head->next=firstnode;

head->prev=tail;

tail->next=head;

firstnode->prev=head;

链表创建结点

//创建链表结点,返回链表结点地址
ListNode* BuyListNode(LTDataType x)
{ListNode* newnode = (ListNode*)malloc(sizeof(ListNode));if (newnode == NULL){perror("malloc failed:");exit(-1);}newnode->data = x;newnode->next = NULL;newnode->prev = NULL;return newnode;
}

双向链表初始化

 注:函数调用时得到动态开辟的链表空间起始地址的两种方案如下

方案一: 当传参时为链表结点的地址,函数的形参设计为二级指针,只有通过传址调用,可以将动态开辟的链表的起始地址带出函数;

方案二: 设计函数的返回类型为结点指针,返回动态开辟的链表结点指针,如此可以得到链表空间的起始地址;

//初始化链表(空链表)
ListNode* ListInit()
{//创建哨兵位结点ListNode* head = BuyListNode(0);//0不是有效数据//初始化哨兵位结点的指针域head->next = head;head->prev = head;return head;
}

销毁双向链表

  • 循环遍历释放结点,包含哨兵位结点;
  • 释放前保存下一结点地址,避免地址丢失;
//销毁链表,包含哨兵位结点
void DestoryList(ListNode* phead)
{assert(phead);//创建寻址指针ListNode* cur = phead;//断开循环链表phead->prev->next = NULL;while (cur != NULL){//记录下一结点地址ListNode* next = cur->next;//释放当前结点free(cur);//寻找下一节点cur = next;}return;
}

打印双向链表

  • 循环遍历链表打印数据,不显示哨兵位结点的数据域;
  • 以哨兵位头结点作为结束标志;
void PrintList(ListNode* phead)
{assert(phead != NULL);ListNode* cur = phead->next;printf("phead<==>");while (cur != phead){printf("%d<==>", cur->data);cur = cur->next;}printf("\n");
}

 双向链表尾插

  •  尾插先找尾,哨兵位的前址域即为尾结点即tail=head->prev;
  • 当链表为空时,连接的逻辑关系相同(创建三个指针变量,按照新结点的前址域指向谁,谁指向新结点,新结点的后址域指向谁,谁指向新结点进行连接);
void ListPushBack(ListNode* phead, LTDataType x)
{assert(phead);//寻找尾结点ListNode* tail = phead->prev;//创建新结点ListNode* newnode = BuyListNode(x);//尾插newnode->prev = tail;tail->next = newnode;newnode->next = phead;phead->prev = newnode;
}
尾插函数测试
void Test1()
{ListNode* plist=ListInit();ListPushBack(plist, 1);ListPushBack(plist, 2);ListPushBack(plist, 3);ListPushBack(plist, 4);ListPushBack(plist, 5);PrintList(plist);
}
int main()
{Test1();return 0;
}

运行结果:

双向链表头插

  • 头插前先保存哨兵位结点的下一节点即原先真正的首节点;
  • 按照按照新结点的前址域指向谁,谁指向新结点,新结点的后址域指向谁,谁指向新结点进行连接从而实现头插,链表为空时,头插逻辑仍然相同;
//链表头插
void ListPushFront(ListNode* phead, LTDataType x)
{assert(phead);//保存原先的首节点ListNode* firstnode = phead->next;//创建新结点ListNode* newnode = BuyListNode(x);//头插newnode->prev = phead;phead->next = newnode;newnode->next = firstnode;firstnode->prev = newnode;
}
头插函数测试
void Test2()
{ListNode* plist = ListInit();ListPushFront(plist, 10);ListPushFront(plist, 20);ListPushFront(plist, 30);ListPushFront(plist, 40);ListPushFront(plist, 50);PrintList(plist);}
int main()
{Test2();return 0;
}

运行结果:

 双向链表尾删

  • 链表中只剩哨兵位结点,此时链表为空,不再进行尾删;
  • 尾删前记录前一节点的地址,方便修改逻辑关系;
//链表尾删
void ListPopBack(ListNode* phead)
{assert(phead);//链表中只剩哨兵位的情况assert(phead->next != phead);//查找尾结点ListNode* tail = phead->prev;//保存尾结点的上一节点ListNode* tailprev = tail->prev;//尾删free(tail);//建立链接关系tailprev->next = phead;phead->prev = tailprev;}
尾删函数测试
void Test3()
{ListNode* plist = ListInit();ListPushBack(plist, 1);ListPushBack(plist, 2);ListPushBack(plist, 3);ListPushBack(plist, 4);ListPushBack(plist, 5);PrintList(plist);ListPopBack(plist);PrintList(plist);ListPopBack(plist);PrintList(plist);ListPopBack(plist);PrintList(plist);}
int main()
{Test3();return 0;
}

运行结果:

双向链表头删

  • 链表中只剩哨兵位结点,此时链表为空,不再进行头删;
  • 头删前记录下一节点的地址,方便修改逻辑关系;
//链表头删
void ListPopFront(ListNode* phead)
{assert(phead);//只剩哨兵位,不再头删assert(phead->next != phead);//保存原先的首节点ListNode* head = phead->next;//保存首结点的下一节点ListNode* headnext = phead->next->next;//头删free(head);//建立链接关系headnext->prev = phead;phead->next = headnext;}
头删函数测试
void Test4()
{ListNode* plist = ListInit();ListPushBack(plist, 1);ListPushBack(plist, 2);ListPushBack(plist, 3);ListPushBack(plist, 4);ListPushBack(plist, 5);PrintList(plist);ListPopFront(plist);PrintList(plist);ListPopFront(plist);PrintList(plist);ListPopFront(plist);PrintList(plist);
}
int main()
{Test4();return 0;
}

运行结果:

双向链表查找

  • 循环遍历链表,从首节点开始遍历,以哨兵位头结点作为结束标志;
  • 根据数据域进行查找,找到返回数据域的结点地址,找不到返回空指针;
ListNode* ListFind(ListNode* phead, LTDataType x)
{assert(phead);//创建遍历指针ListNode* cur = phead->next;//遍历链表while (cur != phead){if ((cur->data) == x){//找到返回下标return cur;}cur = cur->next;}//没找到返回空指针return NULL;
}

双向链表pos位置前插

  • 前插时保存pos位置的前一个节点,方便修改逻辑关系;
  • 按照按照新结点的前址域指向谁,谁指向新结点,新结点的后址域指向谁,谁指向新结点进行链接;
void ListInsert(ListNode* pos, LTDataType x)
{assert(pos != NULL);//创建新结点ListNode* newnode = BuyListNode(x);//保存pos位置的前一个结点ListNode* posprev = pos->prev;//前插newnode->prev = posprev;posprev->next = newnode;newnode->next = pos;pos->prev = newnode;
}
插入函数测试
void Test5()
{ListNode* plist = ListInit();ListPushBack(plist, 1);ListPushBack(plist, 2);ListPushBack(plist, 3);ListPushBack(plist, 4);ListPushBack(plist, 5);int x = 0;printf("请输入查找的数值:");scanf("%d", &x);ListNode* pos = ListFind(plist, x);if (pos == NULL){printf("要查找的值不存在\n");return;}//在查找到数值前插入100ListInsert(pos, 100);PrintList(plist);}
int main()
{Test5();return 0;
}

运行结果:

 双向链表删除pos位置的结点

  • 链表删除pos位置处的结点前先保存前结点和后结点的地址,方便处理链接关系;
//双向链表删除pos位置
void ListEarse(ListNode* pos)
{assert(pos);//保存pos位置处的前一个和后一个结点;ListNode* posprev = pos->prev;ListNode* posnext = pos->next;//删除pos位置结点free(pos);//建立前后节点的链接关系posprev->next = posnext;posnext->prev = posprev;}
删除函数测试
void Test6()
{ListNode* plist = ListInit();ListPushBack(plist, 1);ListPushBack(plist, 2);ListPushBack(plist, 3);ListPushBack(plist, 4);ListPushBack(plist, 5);PrintList(plist);int x = 0;printf("请输入删除的数值:");scanf("%d", &x);ListNode* pos = ListFind(plist, x);if (pos == NULL){printf("要删除的值不存在\n");return;}ListEarse(pos);PrintList(plist);
}
int main()
{Test6();return 0;
}

运行结果:

利用 ListInsert()函数改造头插尾插函数

  • 尾插函数改造版本
void Listpushback(ListNode* phead, LTDataType x)
{assert(phead);ListInsert(phead, x);
}
  • 头插函数改造版本
void Listpushfront(ListNode* phead, LTDataType x)
{assert(phead);ListInsert(phead->next, x);
}

利用ListEarse()函数改造头删 尾删函数

  • 头删函数改造版本
void Listpopfront(ListNode* phead)
{assert(phead);//只剩哨兵位,不再头删assert(phead->next != phead);ListEarse(phead->next);
}
  • 尾删函数改造版本
void Listpopback(ListNode* phead)
{assert(phead);//链表中只剩哨兵位的情况assert(phead->next != phead);ListEarse(phead->prev);
}

计算双向链表长度

int ListLength(ListNode* phead)
{assert(phead);int size = 0;ListNode* cur = phead->next;while (cur != phead){++size;cur = cur->next;}return size;
}

 

 

 

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/95980.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何选择合适的自动化测试工具?

自动化测试是高质量软件交付领域中最重要的实践之一。在今天的敏捷开发方法中&#xff0c;几乎任一软件开发过程都需要在开发阶段的某个时候进行自动化测试&#xff0c;以加速回归测试的工作。自动化测试工具可以帮助测试人员以及整个团队专注于自动化工具无法处理的各自任务&a…

【数据结构---排序】很详细的哦

本篇文章介绍数据结构中的几种排序哦~ 文章目录 前言一、排序是什么&#xff1f;二、排序的分类 1.直接插入排序2.希尔排序3.选择排序4.冒泡排序5.快速排序6.归并排序总结 前言 排序在我们的生活当中无处不在&#xff0c;当然&#xff0c;它在计算机程序当中也是一种很重要的操…

关掉在vscode使用copilot时的提示音

1. 按照图示的操作File --> Preferences --> Settings 2. 搜索框输入关键字Sound&#xff0c;因为是要关掉声音&#xff0c;所以找有关声音的设置 3. 找到如下图所示的选项 Audio Cues:Line Has Inline Suggetion,将其设置为Off 这样&#xff0c;就可以关掉suggest code时…

Elasticsearch:什么时候应该考虑在 Elasticsearch 中添加协调节点?

仅协调节点&#xff08;coordinating only nodes&#xff09;充当智能负载均衡器。 仅协调节点的这种特殊角色通过减轻数据和主节点的协调责任&#xff0c;为广泛的集群提供了优势。 加入集群后&#xff0c;这些节点与任何其他节点类似&#xff0c;都会获取完整的集群状态&…

毕业设计选题之Android基于移动端的线上订餐app外卖点餐安卓系统源码 调试 开题 lw

&#x1f495;&#x1f495;作者&#xff1a;计算机源码社 &#x1f495;&#x1f495;个人简介&#xff1a;本人七年开发经验&#xff0c;擅长Java、Python、PHP、.NET、微信小程序、爬虫、大数据等&#xff0c;大家有这一块的问题可以一起交流&#xff01; &#x1f495;&…

C# - Opencv应用(1) 之VS下环境配置详解

C# - Opencv应用&#xff08;1&#xff09; 之VS下环境配置详解 有时候&#xff0c;单纯c#做前端时会联合C实现的dll来落地某些功能由于有时候会用C - Opencv实现算法后封装成dll&#xff0c;但是有时候会感觉麻烦&#xff0c;不如直接通过C#直接调用Opencv在此慢慢总结下C# -…

SpringBoot vue云办公系统

SpringBoot vue云办公系统 系统功能 云办公系统 登录 员工资料管理: 搜索员工 添加编辑删除员工 导入导出excel 薪资管理: 工资账套管理 添加编辑删除工资账套 员工账套设置 系统管理: 基础信息设置 部门管理 职位管理 职称管理 权限组管理 操作员管理 开发环境和技术 开发语…

选择适合户外篷房企业的企业云盘解决方案

“户外篷房企业用什么企业云盘好&#xff1f;Zoho WorkDrive企业网盘可以帮助户外篷房企业实现文档统一管理、提高工作效率、加强团队协作&#xff0c;并且支持各种文件类型的预览和编辑。” S公司是一家注重管理规范的大型户外篷房企业&#xff0c;已经有10余年的经验。作为设…

string和const char*参数类型选择的合理性对比

在编程中&#xff0c;我们经常需要处理字符串类型的参数。在C中&#xff0c;有两种常见的表示字符串的参数类型&#xff0c;即string和const char*。本文将对比这两种参数类型的特点&#xff0c;分析其在不同情况下的合理性&#xff0c;以便程序员能够根据实际需求做出正确的选…

Docker安装ActiveMQ

ActiveMQ简介 官网地址&#xff1a;https://activemq.apache.org/ 简介&#xff1a; ActiveMQ 是Apache出品&#xff0c;最流行的&#xff0c;能力强劲的开源消息总线。ActiveMQ 是一个完全支持JMS1.1和J2EE 1.4规范的 JMS Provider实现,尽管JMS规范出台已经是很久的事情了,…

次方计数的拆贡献法(考虑组合意义)+限定类问题善用值域与位置进行ds:1006T3

对于多次方的计数问题可以考虑拆贡献。 题目问 ∣ S ∣ 3 |S|^3 ∣S∣3&#xff0c; ∣ S ∣ |S| ∣S∣ 表示选的点数。相当于在 ∣ S ∣ |S| ∣S∣ 中选了3次&#xff0c;也就是选了3个可相同的点。 先考虑3个不相同点的贡献&#xff0c;对应任意3个点&#xff0c;必然会对…

【小工具-生成合并文件】使用python实现2个excel文件根据主键合并生成csv文件

1 小工具说明 1.1 功能说明 一般来说&#xff0c;我们会先有一个老的文件&#xff0c;这个文件内容是定制好相关列的表格&#xff0c;作为每天的报告。 当下一天来的时候&#xff0c;需要根据新的报表文件和昨天的报表文件做一个合并&#xff0c;合并的时候就会出现有些事新增…

【BI看板】Superset2.0+图表二次开发初探

Superset图表功能也很丰富了&#xff0c;但一些个性化的定制需求就需要二次开发了。网上二开的superset版本大多是0.xxx版本的或1.5xxx版本&#xff0c;本次用的是2.xxx。 源码相关说明 源码目录 superset-2.0\superset-frontend\plugins\plugin-chart-echarts 插件相关资料 官…

【重拾C语言】六、批量数据组织(二)线性表——分类与检索(主元排序、冒泡排序、插入排序、顺序检索、对半检索)

目录 前言 六、批量数据组织——数组 6.4 线性表——分类与检索 6.4.1 主元排序 6.4.2 冒泡排序 6.4.3 插入排序 6.4.4 顺序检索&#xff08;线性搜索&#xff09; 6.4.5 对半检索&#xff08;二分查找&#xff09; 算法比较 前言 线性表是一种常见的数据结构&#xf…

在linux下预览markdown的方法,转换成html和pdf

背景 markdown是一种便于编写和版本控制的格式&#xff0c;但却不便于预览——特别是包含表格等复杂内容时&#xff0c;单纯的语法高亮是远远不够的——这样就不能边预览边调整内容&#xff0c;需要找到一种预览方法。 思路 linux下有个工具&#xff0c;叫pandoc&#xff0c…

Go Gin Gorm Casbin权限管理实现 - 2. 使用Gorm存储Casbin权限配置以及`增删改查`

文章目录 0. 背景1. 准备工作2. 权限配置以及增删改查2.1 策略和组使用规范2.2 用户以及组关系的增删改查2.2.1 获取所有用户以及关联的角色2.2.2 角色组中添加用户2.2.3 角色组中删除用户 2.3 角色组权限的增删改查2.3.1 获取所有角色组权限2.3.2 创建角色组权限2.3.3 修改角色…

Spring MVC工作原理

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

Qt model/view 理解01

在 Qt 中对数据处理主要有两种方式&#xff1a;1&#xff09;直接对包含数据的的数据项 item 进行操作&#xff0c;这种方法简单、易操作&#xff0c;现实方式单一的缺点&#xff0c;特别是对于大数据或在不同位置重复出现的数据必须依次对其进行操作&#xff0c;如果现实方式改…

10.1select并发服务器以及客户端

服务器&#xff1a; #include<myhead.h>//do-while只是为了不让花括号单独存在&#xff0c;并不循环 #define ERR_MSG(msg) do{\fprintf(stderr,"%d:",__LINE__);\perror(msg);\ }while(0);#define PORT 8888//端口号1024-49151 #define IP "192.168.2.5…

【16】c++设计模式——>建造者(生成器)模式

什么是建造者模式? 建造者模式&#xff08;Builder Pattern&#xff09;是一种创建型设计模式&#xff0c;它允许你构造复杂对象步骤分解。你可以不同的步骤中使用不同的方式创建对象&#xff0c;且对象的创建与表示是分离的。这样&#xff0c;同样的构建过程可以创建不同的表…