【重拾C语言】六、批量数据组织(二)线性表——分类与检索(主元排序、冒泡排序、插入排序、顺序检索、对半检索)

目录

前言

六、批量数据组织——数组

6.4 线性表——分类与检索

6.4.1 主元排序

6.4.2 冒泡排序

6.4.3 插入排序

6.4.4 顺序检索(线性搜索)

6.4.5 对半检索(二分查找)

算法比较


前言

        线性表是一种常见的数据结构,用于存储一组具有相同类型的元素。本文主要介绍了下面几种常见的线性表的排序和检索算法:

  1. 主元排序(主元选择排序):这是一种选择排序算法,它通过选择主元(通常是最小或最大元素)并将其放置在正确的位置来进行排序。该算法重复选择主元并移动它,直到所有元素都有序排列。

  2. 冒泡排序:这是一种简单的排序算法,它通过多次比较和交换相邻元素的方式将较大的元素逐渐向右移动。通过重复这个过程直到所有元素都有序排列,最终实现排序。

  3. 插入排序:这是一种通过将元素逐个插入已排序序列的合适位置来完成排序的算法。在插入排序过程中,将当前元素与已排序序列中的元素逐个比较,直到找到合适的插入位置。

  4. 顺序检索:也称为线性搜索,是一种简单直接的搜索方法,从线性表的起始位置开始逐个比较元素,直到找到目标元素或遍历完整个线性表。

  5. 对半检索(二分查找):对于已排序的线性表,可以使用对半检索来提高搜索效率。该算法通过将目标元素与线性表的中间元素进行比较,然后根据比较结果将搜索范围缩小一半。重复这个过程,直到找到目标元素或确定目标元素不存在。

六、批量数据组织——数组

6.4 线性表——分类与检索

6.4.1 主元排序

        主元排序(主元选择排序)是一种简单的排序算法,它通过选择线性表中的主元(也称为枢轴元素)并将其放置在正确的位置上来实现排序。主元排序算法的基本思想是:选择一个主元,将线性表中小于主元的元素放在主元的左边,将大于主元的元素放在主元的右边,然后对主元的左右两部分递归地进行排序,直到整个线性表有序。

void mainElementSort(int arr[], int left, int right) {if (left < right) {int pivot = partition(arr, left, right);  // 获取主元的位置mainElementSort(arr, left, pivot - 1);     // 对主元左边的元素进行排序mainElementSort(arr, pivot + 1, right);    // 对主元右边的元素进行排序}
}int partition(int arr[], int left, int right) {int pivotIndex = left;  // 将第一个元素作为主元int pivotValue = arr[left];int i, j;for (i = left + 1; i <= right; i++) {if (arr[i] < pivotValue) {pivotIndex++;swap(arr, i, pivotIndex);  // 将小于主元的元素交换到主元的左边}}swap(arr, left, pivotIndex);  // 将主元放置在正确的位置上return pivotIndex;
}void swap(int arr[], int i, int j) {int temp = arr[i];arr[i] = arr[j];arr[j] = temp;
}

        在主元排序算法中,首先选择一个主元,这里选择线性表的第一个元素作为主元。然后,从主元的下一个位置开始遍历线性表,将小于主元的元素逐个交换到主元的左边,并记录交换次数。最后,将主元放置在正确的位置上,即交换次数加一的位置。这样,主元左边的元素都小于主元,主元右边的元素都大于主元。

        接下来,对主元的左右两部分分别递归地应用主元排序算法,直到每个子序列只有一个元素为止。最终,整个线性表就会被排序。

        主元排序是一种简单但有效的排序算法,其平均时间复杂度为O(nlogn),其中n是线性表的长度。然而,如果每次选择的主元都不合理,可能导致算法的性能下降。因此,在实际应用中,选择合适的主元策略对算法的性能至关重要。

6.4.2 冒泡排序

        冒泡排序(Bubble Sort)是一种简单的排序算法,它通过反复交换相邻的元素将最大的元素逐步 "冒泡" 到数组的末尾,从而实现排序。冒泡排序算法的基本思想是:比较相邻的两个元素,如果它们的顺序不正确,则交换它们,直到整个数组有序。

void bubbleSort(int arr[], int n) {int i, j;for (i = 0; i < n - 1; i++) {     // 通过n-1次循环将最大元素冒泡到末尾for (j = 0; j < n - 1 - i; j++) {   // 每次循环比较相邻的两个元素if (arr[j] > arr[j + 1]) {int temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;   // 交换位置,使更大的元素向后移动}}}
}

        在冒泡排序算法中,外层循环控制冒泡的轮数,内层循环用于比较相邻的两个元素并进行交换。每一轮循环都将最大的元素冒泡到当前未排序部分的末尾。通过n-1次循环,就可以将整个数组排序完成。

        冒泡排序的时间复杂度为O(n^2),其中n是数组的长度。尽管冒泡排序的时间复杂度较高,但它的实现较为简单,且在某些情况下可能具有一定的优势。然而,在处理大型数据集时,通常会选择更高效的排序算法。

6.4.3 插入排序

        插入排序(Insertion Sort)是一种简单直观的排序算法,它通过构建有序序列,不断将未排序的元素插入到已排序序列中的适当位置,从而实现排序。插入排序算法的基本思想是:将数组分为已排序和未排序两部分,每次从未排序部分取出一个元素,将其插入到已排序部分的正确位置

void insertionSort(int arr[], int n) {int i, j, key;for (i = 1; i < n; i++) {key = arr[i];   // 从未排序部分取出一个元素j = i - 1;while (j >= 0 && arr[j] > key) {arr[j + 1] = arr[j];   // 将比key大的元素向后移动j--;}arr[j + 1] = key;   // 将key插入到正确的位置上}
}

        在插入排序算法中,将数组分为已排序部分(初始为空)和未排序部分。从未排序部分依次取出元素,将其与已排序部分的元素从右向左进行比较,直到找到合适的位置插入。为了插入元素,需要将比插入元素大的元素向右移动一个位置,为插入元素留出空间。最后,将插入元素放置在正确的位置上,即完成一次插入操作。

        通过n-1次循环,就可以将整个数组排序完成。

        插入排序的时间复杂度为O(n^2),其中n是数组的长度。尽管插入排序的时间复杂度较高,但它对小型数据集的排序效果较好,并且在部分已经有序的情况下,插入排序的性能会更加出色。

6.4.4 顺序检索(线性搜索)

        顺序检索(Sequential Search),也称为线性搜索,是一种简单直观的搜索算法。顺序检索算法的基本思想是:从给定的数据集合中按顺序逐个比较元素,直到找到目标元素或搜索完整个数据集合。

int sequentialSearch(int arr[], int n, int target) {for (int i = 0; i < n; i++) {if (arr[i] == target) {return i;   // 找到目标元素,返回元素的索引}}return -1;  // 未找到目标元素,返回-1表示失败
}

        顺序检索算法通过遍历数据集合,逐个比较元素和目标元素是否相等。如果找到了目标元素,就返回该元素在数据集合中的索引;如果遍历完整个数据集合仍未找到目标元素,则返回-1表示搜索失败。

        顺序检索的时间复杂度为O(n),其中n是数据集合的大小。由于顺序检索需要逐个比较元素,它的效率较低,特别是在大型数据集合上。然而,在小型数据集合或无序数据集合中进行简单搜索时,顺序检索是一种常用的方法。

6.4.5 对半检索(二分查找)

        对半检索(Binary Search),也称为二分查找,是一种高效的搜索算法,用于在有序数组或列表中查找目标元素。对半检索算法的基本思想是:将数组或列表分成两部分,通过比较目标元素与中间元素的大小关系,确定目标元素可能在的那一部分,然后继续在该部分中进行查找,缩小搜索范围,直到找到目标元素或确定目标元素不存在。

int binarySearch(int arr[], int n, int target) {int low = 0;int high = n - 1;while (low <= high) {int mid = (low + high) / 2;  // 计算中间元素的索引if (arr[mid] == target) {return mid;  // 找到目标元素,返回元素的索引} else if (arr[mid] < target) {low = mid + 1;  // 目标元素在右半部分,调整搜索范围} else {high = mid - 1;  // 目标元素在左半部分,调整搜索范围}}return -1;  // 未找到目标元素,返回-1表示失败
}

        对半检索算法通过比较目标元素与中间元素的大小关系,将数组或列表分成两部分。如果中间元素等于目标元素,就返回中间元素的索引;如果中间元素小于目标元素,说明目标元素在右半部分,将搜索范围缩小到右半部分;如果中间元素大于目标元素,说明目标元素在左半部分,将搜索范围缩小到左半部分。通过不断缩小搜索范围,最终可以找到目标元素或确定目标元素不存在。

        对半检索的前提是数组或列表必须是有序的,因为它利用了有序性质进行二分查找。对半检索的时间复杂度为O(log n),其中n是数组或列表的长度。由于每次都将搜索范围缩小一半,对半检索的效率非常高。

算法比较

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define SIZE 100000
void swap(int arr[], int i, int j) {int temp = arr[i];arr[i] = arr[j];arr[j] = temp;
}
int partition(int arr[], int left, int right) {int pivotIndex = left;  // 将第一个元素作为主元int pivotValue = arr[left];int i, j;for (i = left + 1; i <= right; i++) {if (arr[i] < pivotValue) {pivotIndex++;swap(arr, i, pivotIndex);  // 将小于主元的元素交换到主元的左边}}swap(arr, left, pivotIndex);  // 将主元放置在正确的位置上return pivotIndex;
}void primeSort(int arr[], int left, int right) {if (left < right) {int pivot = partition(arr, left, right);  // 获取主元的位置primeSort(arr, left, pivot - 1);     // 对主元左边的元素进行排序primeSort(arr, pivot + 1, right);    // 对主元右边的元素进行排序}
}void bubbleSort(int arr[], int n) {int i, j;for (i = 0; i < n - 1; i++) {     // 通过n-1次循环将最大元素冒泡到末尾for (j = 0; j < n - 1 - i; j++) {   // 每次循环比较相邻的两个元素if (arr[j] > arr[j + 1]) {int temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;   // 交换位置,使更大的元素向后移动}}}
}void insertionSort(int arr[], int n) {int i, j, key;for (i = 1; i < n; i++) {key = arr[i];   // 从未排序部分取出一个元素j = i - 1;while (j >= 0 && arr[j] > key) {arr[j + 1] = arr[j];   // 将比key大的元素向后移动j--;}arr[j + 1] = key;   // 将key插入到正确的位置上}
}int sequentialSearch(int arr[], int n, int target) {for (int i = 0; i < n; i++) {if (arr[i] == target) {return i;   // 找到目标元素,返回元素的索引}}return -1;  // 未找到目标元素,返回-1表示失败
}int binarySearch(int arr[], int n, int target) {int low = 0;int high = n - 1;while (low <= high) {int mid = (low + high) / 2;  // 计算中间元素的索引if (arr[mid] == target) {return mid;  // 找到目标元素,返回元素的索引} else if (arr[mid] < target) {low = mid + 1;  // 目标元素在右半部分,调整搜索范围} else {high = mid - 1;  // 目标元素在左半部分,调整搜索范围}}return -1;  // 未找到目标元素,返回-1表示失败
}double measureTime(clock_t start, clock_t end) {return ((double) (end - start)) / CLOCKS_PER_SEC;
}int main() {int arr[SIZE];// 使用时间作为随机数种子srand(time(NULL));// 待排序的数组for (int i = 0; i < SIZE; i++) {arr[i] = rand();};int n = sizeof(arr) / sizeof(arr[0]);  // 数组的长度int target = 7;  // 待搜索的目标元素// 测量主元排序算法的运行时间clock_t start = clock();primeSort(arr, 0, n);clock_t end = clock();printf("Prime Sorting Time: %.6f seconds\n", measureTime(start, end));// 测量冒泡排序算法的运行时间start = clock();bubbleSort(arr, n);end = clock();printf("Bubble Sort Time: %.6f seconds\n", measureTime(start, end));// 测量插入排序算法的运行时间start = clock();insertionSort(arr, n);end = clock();printf("Insertion Sort Time: %.6f seconds\n", measureTime(start, end));// 测量顺序检索算法的运行时间start = clock();int sequentialSearchResult = sequentialSearch(arr, n, target);end = clock();printf("Sequential Search Time: %.6f seconds\n", measureTime(start, end));printf("Sequential Search Result: %d\n", sequentialSearchResult);// 测量对半检索算法的运行时间start = clock();int binarySearchResult = binarySearch(arr, n, target);end = clock();printf("Binary Search Time: %.6f seconds\n", measureTime(start, end));printf("Binary Search Result: %d\n", binarySearchResult);return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/95961.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在linux下预览markdown的方法,转换成html和pdf

背景 markdown是一种便于编写和版本控制的格式&#xff0c;但却不便于预览——特别是包含表格等复杂内容时&#xff0c;单纯的语法高亮是远远不够的——这样就不能边预览边调整内容&#xff0c;需要找到一种预览方法。 思路 linux下有个工具&#xff0c;叫pandoc&#xff0c…

Go Gin Gorm Casbin权限管理实现 - 2. 使用Gorm存储Casbin权限配置以及`增删改查`

文章目录 0. 背景1. 准备工作2. 权限配置以及增删改查2.1 策略和组使用规范2.2 用户以及组关系的增删改查2.2.1 获取所有用户以及关联的角色2.2.2 角色组中添加用户2.2.3 角色组中删除用户 2.3 角色组权限的增删改查2.3.1 获取所有角色组权限2.3.2 创建角色组权限2.3.3 修改角色…

Spring MVC工作原理

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

Qt model/view 理解01

在 Qt 中对数据处理主要有两种方式&#xff1a;1&#xff09;直接对包含数据的的数据项 item 进行操作&#xff0c;这种方法简单、易操作&#xff0c;现实方式单一的缺点&#xff0c;特别是对于大数据或在不同位置重复出现的数据必须依次对其进行操作&#xff0c;如果现实方式改…

10.1select并发服务器以及客户端

服务器&#xff1a; #include<myhead.h>//do-while只是为了不让花括号单独存在&#xff0c;并不循环 #define ERR_MSG(msg) do{\fprintf(stderr,"%d:",__LINE__);\perror(msg);\ }while(0);#define PORT 8888//端口号1024-49151 #define IP "192.168.2.5…

【16】c++设计模式——>建造者(生成器)模式

什么是建造者模式? 建造者模式&#xff08;Builder Pattern&#xff09;是一种创建型设计模式&#xff0c;它允许你构造复杂对象步骤分解。你可以不同的步骤中使用不同的方式创建对象&#xff0c;且对象的创建与表示是分离的。这样&#xff0c;同样的构建过程可以创建不同的表…

数据结构-快速排序-C语言实现

引言&#xff1a;快速排序作为一种非常经典且高效的排序算法&#xff0c;无论是工作还是面试中广泛用到&#xff0c;作为一种分治思想&#xff0c;需要熟悉递归思想。下面来讲讲快速排序的实现和改进。 老规矩&#xff0c;先用图解来理解一下&#xff1a;&#xff08;这里使用快…

MATLAB中syms函数使用

目录 语法 说明 示例 创建符号标量变量 创建符号标量变量的向量 创建符号标量变量矩阵 管理符号标量变量的假设 创建和评估符号函数 syms函数的作用是创建符号标量和函数&#xff0c;以及矩阵变量和函数。 语法 syms var1 ... varN syms var1 ... varN [n1 ... nM] …

指数分布优化器(EDO)(含MATLAB代码)

先做一个声明&#xff1a;文章是由我的个人公众号中的推送直接复制粘贴而来&#xff0c;因此对智能优化算法感兴趣的朋友&#xff0c;可关注我的个人公众号&#xff1a;启发式算法讨论。我会不定期在公众号里分享不同的智能优化算法&#xff0c;经典的&#xff0c;或者是近几年…

“秋天第一只大闸蟹”背后,看见京东一体化供应链

京东似乎正在从一个大闸蟹的物流服务商、销售商&#xff0c;转变为一个大闸蟹的“供货商”。 作者|斗斗 编辑|皮爷 出品|产业家 阳澄湖连续几天的降雨&#xff0c;使得通往蟹塘的路异常难走。 长期驻扎此地的京东相关负责人蹲在蟹塘边的小路上&#xff0c;指着蟹塘说道…

【RabbitMQ 实战】08 集群原理剖析

上一节&#xff0c;我们用docker-compose搭建了一个RabbitMQ集群&#xff0c;这一节我们来分析一下集群的原理 一、基础概念 1.1 元数据 前面我们有介绍到 RabbitMQ 内部有各种基础构件&#xff0c;包括队列、交换器、绑定、虚拟主机等&#xff0c;他们组成了 AMQP 协议消息…

Cocos Creator3.8 项目实战(五)背景无限滚屏效果如何实现

在游戏中&#xff0c;我们经常会实现背景无限滚动的效果。那这些效果是怎么实现的呢&#xff1f; 原理很简单&#xff0c;就是使用多张背景图&#xff0c;每张图&#xff0c;每一帧都同时移动&#xff0c;当图移出屏幕外时&#xff0c;将其位置设置到下一张图的初始位置&#x…

【AI视野·今日NLP 自然语言处理论文速览 第四十八期】Thu, 5 Oct 2023

AI视野今日CS.NLP 自然语言处理论文速览 Thu, 5 Oct 2023 Totally 50 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Computation and Language Papers Retrieval meets Long Context Large Language Models Authors Peng Xu, Wei Ping, Xianchao Wu, Lawrence McA…

[架构之路-231]:计算机硬件与体系结构 - 性能评估汇总,性能优化加速比

目录 一、计算机体系结构 二、计算机性能评估 2.1 分类方法1 2.2 分类方法2 三、常见的专项性能测试工具 3.1 浮点运算性能&#xff08;FLOPS&#xff09; 3.2 综合理论性能法 3.3 历史基准测试&#xff08;跑分软件&#xff09;&#xff1a;通过运行典型的综合性的程序…

反爬虫机制与反爬虫技术(一)

反爬虫机制与反爬虫技术一 1、网络爬虫的法律与道德问题2、反爬虫机制与反爬虫技术2.1、User-Agent伪装2.2、代理IP2.3、请求频率控制2.4、动态页面处理2.5、验证码识别3、反爬虫案例:豆瓣电影Top250爬取3.1、爬取目标3.2、库(模块)简介3.3、翻页分析3.4、发送请求3.5、提取…

【VUE·疑难问题】定义 table 中每行的高度(使用 element-UI)

一、如何定义 table 中每一行的 height &#xff1f; 1.table例子 <!-- 二、table --><div style"overflow: hidden;display: block;height: 68vh;width: 100%;"><el-table stripe show-header style"width: 100%" :data"tableData&q…

mysql面试题20:有哪些合适的分布式主键方案

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:有哪些合适的分布式主键方案? UUID:UUID通常是由一个二进制的128位整数表示,可以保证全局的唯一性。在Java中,可以通过UUID类生成一个UUID。例…

Hadoop伪分布式环境搭建

什么是Hadoop伪分布式集群&#xff1f; Hadoop 伪分布式集群是一种在单个节点上模拟分布式环境的配置&#xff0c;用于学习、开发和测试 Hadoop 的功能和特性。它提供了一个简化的方式来体验和熟悉 Hadoop 的各个组件&#xff0c;而无需配置和管理一个真正的多节点集群。 在 Ha…

定量活性关系(QSAR)是什么?定量结构-性质关系(QSPR)是什么?

定量活性关系&#xff08;QSAR&#xff09;是什么&#xff1f; 定量活性关系&#xff08;QSAR&#xff0c;Quantitative Structure-Activity Relationship&#xff09;分析是指利用理论计算和统计分析工具来研究系列化合物结构&#xff08;包括二维分子结构、三维分子结构和电…

C++ 学习系列 -- std::list

一 std::list 介绍 list 是 c 中的序列式容器&#xff0c;其实现是双向链表&#xff0c;每个元素都有两个指针&#xff0c;分别指向前一个节点与后一个节点 链表与数组都是计算机常用的内存数据结构&#xff0c;与数组连续内存空间不一样的地方在于&#xff0c;链表的空间是不…