强化学习数学原理(三)——值迭代

一、值迭代过程

v=\max_\pi(r_\pi+\gamma P_\pi v)

        上面是贝尔曼最优公式,之前我们说过,f(v)=v,贝尔曼公式是满足contraction mapping theorem的,能够求解除它最优的策略和最优的state value,我们需要通过一个最优v*,这个v*来计算状态pi*,而vk通过迭代,就可以求出唯一的这个v*,而这个算法就叫做值迭代。V(s)是状态s的最优价值,R是在状态s时执行动作a可获得的,y是折扣因子(衰减系数),还有状态概率矩阵P

1.1 初始化状态价值函数

        我们说过,这个函数有两个未知量。v与pi,因此要计算最优策略,我们就需要先假设一个初始值。选择一个初始值先来表示每个状态的价值。假设我们就可以设置所有价值V(s)都为0

1.2 迭代更新价值函数

        使用贝尔曼最优方程更新状态价值函数,对于与每个状态s,计算改状态下所有可能的动作a下的期望值,然后选择最大值作为新的状态价值函数。Vk是第k次迭代时s的状态,他会更新为k+1,直到k+1是最优时刻为止,具体的更新公式为:

v_{k+1}=f(v_k)=\max_\pi(r_\pi+\gamma P_\pi v_k)

        这上面就包含了所说了两个步骤

        第一步 ploicy update:\pi_{k+1}=\arg\max_\pi(r_\pi+\gamma P_\pi v_k)

        第二部 value update:v_{k+1}=r_{\pi_{k+1}}+\gamma P_{\pi_{k+1}}v_k

        每次更新一个pik+1之后代入,就可以得到迭代后的vk+1,但是这里有个点,迭代过程中,左侧他是vk+1,所以他并不是我们所说的state value,他是一个值,

1.2.1 Ploicy update

\pi_{k+1}=\arg\max_\pi(r_\pi+\gamma P_\pi v_k)

        我们把上面的公式具体的拆成每个状态对应的element,得到

\pi_{k+1}(s)=\arg\max_{\pi}\sum_{a}\pi(a|s)\underbrace{\left(\sum_{r}p(r|s,a)r+\gamma\sum_{s^{\prime}}p(s^{\prime}|s,a)v_{k}(s^{\prime})\right)}_{q_{k}(s,a)}

        vk是已知的(假设了v0,假设现在就是v0,求pi1),那么qk(s,a)  (q1)是已知的,最优策略,就会选取qk最大时的action,其他行动为0,这样就只与q(s,a)相关,那么pik+1就知道了,就是pik+1(s)最大的一个

\left.\pi_{k+1}(a|s)=\left\{\begin{array}{ll}1&a=a_k^*(s)\\0&a\neq a_k^*(s)\end{array}\right.\right.

1.2.2 Value update

        对于其elementwise form v_{k+1}(s)=\sum_a\pi_{k+1}(a|s)\underbrace{\left(\sum_rp(r|s,a)r+\gamma\sum_{s^{\prime}}p(s^{\prime}|s,a)v_k(s^{\prime})\right)}_{q_k(s,a)}

        按照迭代顺序写出每一个值,从1.2.1,我们就可以知道,qk(s,a)是能求出的,注意一点,策略迭代里面,求出了最大的value对应的state,那么我们就知道这个pik+1,求出最后的结果

v_{k+1}(s)=\max_aq_k(a,s)

1.3 判断收敛性

        每次迭代后,检查状态价值函数的变化。如果状态价值变化小于某个阈值(例如 ϵ\epsilonϵ),则认为收敛,可以终止迭代。常见的收敛条件是:

\max_s|V_{k+1}(s)-V_k(s)|<\epsilon

通常  \epsilon  是一个小的正数,用于表示精度要求。如果状态价值函数的变化足够小,算法收敛。

        根据例子,给出一个python代码

import numpy as np# 初始化参数
gamma = 0.9  # 折扣因子
epsilon = 1e-6  # 收敛阈值
max_iterations = 1000  # 最大迭代次数
S = 4  # 状态空间大小
A = 5  # 动作空间大小# 转移概率矩阵 P(s'|s, a) - 4x5x4 的三维矩阵
P = np.zeros((S, A, S))## 顺时针行动
# 奖励函数 R(s, a) - 4x5 的矩阵
R = np.array([[-1, 4, -1, -1, -1],[-1, 4, -1, -1, -1],[4, -1, -1, -1, -1],[-1, -1, -1, -1, 1]])# 转移概率矩阵
# 动作 a=1
P[:, 0, :] = np.array([[0.8, 0.1, 0.1, 0],[0.1, 0.8, 0.1, 0],[0.2, 0.2, 0.6, 0],[0, 0, 0, 1]])# 动作 a=2
P[:, 1, :] = np.array([[0.6, 0.3, 0.1, 0],[0.1, 0.7, 0.2, 0],[0.3, 0.3, 0.4, 0],[0, 0, 0, 1]])# 动作 a=3
P[:, 2, :] = np.array([[0.7, 0.2, 0.1, 0],[0.1, 0.8, 0.1, 0],[0.2, 0.2, 0.6, 0],[0, 0, 0, 1]])# 动作 a=4
P[:, 3, :] = np.array([[0.5, 0.4, 0.1, 0],[0.2, 0.7, 0.1, 0],[0.4, 0.4, 0.2, 0],[0, 0, 0, 1]])# 动作 a=5
P[:, 4, :] = np.array([[0.9, 0.05, 0.05, 0],[0.05, 0.9, 0.05, 0],[0.1, 0.1, 0.8, 0],[0, 0, 0, 1]])# 初始化状态价值函数 V(s)
V = np.zeros(S)# 记录最优策略
pi = np.zeros(S, dtype=int)# 值迭代算法
for k in range(max_iterations):V_new = np.zeros(S)delta = 0  # 最大值变化# 遍历每个状态for s in range(S):# 对每个动作计算期望回报value = -float('inf')  # 当前最大回报(初始化为负无穷)for a in range(A):# 计算该动作下的期望回报expected_return = R[s, a] + gamma * np.sum(P[s, a, :] * V)value = max(value, expected_return)  # 保持最大的期望回报# 更新当前状态的价值V_new[s] = valuedelta = max(delta, abs(V_new[s] - V[s]))  # 计算状态价值的变化# 更新状态价值V = V_new# 如果变化小于 epsilon,认为收敛if delta < epsilon:break# 根据最优状态价值函数计算最优策略
for s in range(S):max_value = -float('inf')best_action = -1for a in range(A):# 计算每个动作下的期望回报expected_return = R[s, a] + gamma * np.sum(P[s, a, :] * V)if expected_return > max_value:max_value = expected_returnbest_action = api[s] = best_action# 输出结果
print("最优状态价值函数 V*(s):")
print(V)print("最优策略 pi*(s):")
print(pi)

MATLAB实现:

% 初始化参数
gamma = 0.9;        % 折扣因子
epsilon = 1e-6;     % 收敛阈值
max_iterations = 1000; % 最大迭代次数
S = 4;              % 状态空间大小
A = 5;              % 动作空间大小% 转移概率矩阵 P(s'|s, a) - 4x5x4 的三维矩阵
P = zeros(S, A, S);% 奖励函数 R(s, a) - 4x5 的矩阵
R = [-1, 4, -1, -1, -1;-1, 4, -1, -1, -1;4, -1, -1, -1, -1;-1, -1, -1, -1, 1];% 转移概率矩阵
% 动作 a=1
P(:, 1, :) = [0.8, 0.1, 0.1, 0; 0.1, 0.8, 0.1, 0; 0.2, 0.2, 0.6, 0; 0, 0, 0, 1];% 动作 a=2
P(:, 2, :) = [0.6, 0.3, 0.1, 0;0.1, 0.7, 0.2, 0;0.3, 0.3, 0.4, 0;0, 0, 0, 1];% 动作 a=3
P(:, 3, :) = [0.7, 0.2, 0.1, 0;0.1, 0.8, 0.1, 0;0.2, 0.2, 0.6, 0;0, 0, 0, 1];% 动作 a=4
P(:, 4, :) = [0.5, 0.4, 0.1, 0;0.2, 0.7, 0.1, 0;0.4, 0.4, 0.2, 0;0, 0, 0, 1];% 动作 a=5
P(:, 5, :) = [0.9, 0.05, 0.05, 0;0.05, 0.9, 0.05, 0;0.1, 0.1, 0.8, 0;0, 0, 0, 1];% 初始化状态价值函数 V(s)
V = zeros(S, 1);% 记录最优策略
pi = zeros(S, 1);% 值迭代算法
for k = 1:max_iterationsV_new = zeros(S, 1);delta = 0; % 最大值变化% 遍历每个状态for s = 1:S% 对每个动作计算期望回报value = -Inf; % 当前最大回报(初始化为负无穷)for a = 1:A% 计算该动作下的期望回报expected_return = R(s, a) + gamma * sum(squeeze(P(s, a, :)) .* V);value = max(value, expected_return); % 保持最大的期望回报end% 更新当前状态的价值V_new(s) = value;delta = max(delta, abs(V_new(s) - V(s))); % 计算状态价值的变化end% 更新状态价值V = V_new;% 如果变化小于 epsilon,认为收敛if delta < epsilonbreak;end
end% 根据最优状态价值函数计算最优策略
for s = 1:Smax_value = -Inf;best_action = -1;for a = 1:A% 计算每个动作下的期望回报expected_return = R(s, a) + gamma * sum(squeeze(P(s, a, :)) .* V');if expected_return > max_valuemax_value = expected_return;best_action = a;endendpi(s) = best_action;
end% 输出结果
disp('最优状态价值函数 V*(s):');
disp(V);disp('最优策略 pi*(s):');
disp(pi);

修改奖励与衰减系数可得到不同V

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/893859.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

03:Heap代码的分析

Heap代码的分析 1、内存对齐2、Heap_1.c文件代码分析3、Heap_2.c文件代码分析4、Heap_4.c文件代码分析5、Heap_5.c文件代码分析 1、内存对齐 内存对齐的作用是为了CPU更快的读取数据。对齐存储与不对齐存储的情况如下&#xff1a; 计算机读取内存中的数据时是一组一组的读取的…

three.js+WebGL踩坑经验合集(5.2):THREE.Mesh和THREE.Line2在镜像处理上的区别

本文紧接上篇&#xff1a; (5.1):THREE.Line2又一坑&#xff1a;镜像后不见了 本文将解答上篇提到的3个问题&#xff0c;首先回答第二个问题&#xff0c;如何获取全局的缩放值。 scaleWorld这个玩意儿呢&#xff0c;three.js官方就没提供了。应该说&#xff0c;一般的渲染引…

jQuery的系统性总结

前言 jQuery是一个快速、小型且功能丰富的 JavaScript 库&#xff08;实际上就是一堆JS代码&#xff09;。其目的在于&#xff1a;write less do more。 优点&#xff1a; 写得少做得多&#xff1b;兼容性&#xff1b;体积小&#xff1b;链式编程&#xff1b;隐式迭代、插件丰…

【背包问题】完全背包

目录 前言&#xff1a; 一&#xff0c;完全背包问题 问题描述&#xff1a; 模板题目&#xff1a; 题目解析&#xff1a; 代码&#xff1a; 空间优化&#xff1a; 二&#xff0c;典例 1&#xff0c;零钱兑换 题目解析&#xff1a; 算法分析&#xff1a; 代码&#xff…

【Python实现机器遗忘算法】复现2023年TNNLS期刊算法UNSIR

【Python实现机器遗忘算法】复现2023年TNNLS期刊算法UNSIR 1 算法原理 Tarun A K, Chundawat V S, Mandal M, et al. Fast yet effective machine unlearning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023. 本文提出了一种名为 UNSIR&#xff08;Un…

知识管理平台在企业信息化建设中的应用价值与未来展望

内容概要 在当今信息化时代&#xff0c;企业面临着海量信息的挑战&#xff0c;知识管理平台因此应运而生&#xff0c;成为企业提升管理效率和决策能力的关键工具。知识管理平台不仅仅是一个信息存储的工具&#xff0c;它集成了信息共享、协作与创新、决策支持等多项功能。通过…

MiniHack:为强化学习研究提供丰富而复杂的环境

人工智能咨询培训老师叶梓 转载标明出处 想要掌握如何将大模型的力量发挥到极致吗&#xff1f;叶老师带您深入了解 Llama Factory —— 一款革命性的大模型微调工具&#xff08;限时免费&#xff09;。 1小时实战课程&#xff0c;您将学习到如何轻松上手并有效利用 Llama Facto…

从AD的原理图自动提取引脚网络的小工具

这里跟大家分享一个我自己写的小软件&#xff0c;实现从AD的原理图里自动找出网络名称和引脚的对应。存成文本方便后续做表格或是使用简单行列编辑生成引脚约束文件&#xff08;如.XDC .UCF .TCL等&#xff09;。 我们在FPGA设计中需要引脚锁定文件&#xff0c;就是指示TOP层…

MySQL分表自动化创建的实现方案(存储过程、事件调度器)

《MySQL 新年度自动分表创建项目方案》 一、项目目的 在数据库应用场景中&#xff0c;随着数据量的不断增长&#xff0c;单表存储数据可能会面临性能瓶颈&#xff0c;例如查询、插入、更新等操作的效率会逐渐降低。分表是一种有效的优化策略&#xff0c;它将数据分散存储在多…

HTML5使用favicon.ico图标

目录 1. 使用favicon.ico图标 1. 使用favicon.ico图标 favicon.ico一般用于作为网站标志&#xff0c;它显示在浏览器的地址栏或者标签上 制作favicon图标 选择一个png转ico的在线网站&#xff0c;这里以https://www.bitbug.net/为例。上传图片&#xff0c;目标尺寸选择48x48&a…

【C++动态规划 网格】2328. 网格图中递增路径的数目|2001

本文涉及知识点 C动态规划 LeetCode2328. 网格图中递增路径的数目 给你一个 m x n 的整数网格图 grid &#xff0c;你可以从一个格子移动到 4 个方向相邻的任意一个格子。 请你返回在网格图中从 任意 格子出发&#xff0c;达到 任意 格子&#xff0c;且路径中的数字是 严格递…

fatal error C1083: ޷[特殊字符]ļ: openssl/opensslv.h: No such file or directory

一、环境 1. Visual Studio 2017 2. edk2&#xff1a;202305 3. Python&#xff1a;3.11.4 二、 fatal error C1083: ޷&#xbfab0;ļ: openssl/opensslv.h: No such file or directory 上图出现这个警告&#xff0c;不用管。 出现Done&#xff0c;说明编译成功。 执行上…

组件框架漏洞

一.基础概念 1.组件 定义&#xff1a;组件是软件开发中具有特定功能或特性的可重用部件或模块&#xff0c;能独立使用或集成到更大系统。 类型 前端 UI 组件&#xff1a;像按钮、下拉菜单、导航栏等&#xff0c;负责构建用户界面&#xff0c;提升用户交互体验。例如在电商 AP…

隐藏字符造成的linux命令执行失败(非常难绷)

隐藏字符问题发生情景 事情是这样的&#xff0c;为了方便主机和虚拟机之间数据的传输&#xff0c;我打算建一个共享文件夹。由于我选择的是手动挂载&#xff0c;在VirtualBox 中创建好共享文件夹后&#xff0c;我着手打开Ubuntu&#xff0c;想将这个共享文件夹挂载到我的家目录…

C/C++ 虚函数

虚函数的定义 虚函数是指在基类内部声明的成员函数前面添加关键字 virtual 指明的函数虚函数存在的意义是为了实现多态&#xff0c;让派生类能够重写(override)其基类的成员函数派生类重写基类的虚函数时&#xff0c;可以添加 virtual 关键字&#xff0c;但不是必须这么做虚函…

爬虫基础之爬取某基金网站+数据分析

声明: 本案例仅供学习参考使用&#xff0c;任何不法的活动均与本作者无关 网站:天天基金网(1234567.com.cn) --首批独立基金销售机构-- 东方财富网旗下基金平台! 本案例所需要的模块: 1.requests 2.re(内置) 3.pandas 4.pyecharts 其他均需要 pip install 模块名 爬取步骤: …

RKNN_C++版本-YOLOV5

1.背景 为了实现低延时&#xff0c;所以开始看看C版本的rknn的使用&#xff0c;确实有不足的地方&#xff0c;请指正&#xff08;代码借鉴了rk官方的仓库文件&#xff09;。 2.基本的操作流程 1.读取模型初始化 // 设置基本信息 // 在postprocess.h文件中定义&#xff0c;详见…

Learning Vue 读书笔记 Chapter 2

2. Vue 基本工作原理 2.1 Virtual DOM 概念&#xff1a; DOM: DOM以内存中树状数据结构的形式&#xff0c;代表了网页上的HTML&#xff08;或XML&#xff09;文档内容。它充当了一个编程接口&#xff0c;将网页与实际的编程代码&#xff08;如JavaScript&#xff09;连接起来…

【C++高并发服务器WebServer】-7:共享内存

本文目录 一、共享内存1.1 shmget函数1.2 shmat1.3 shmdt1.4 shmctl1.5 ftok1.6 共享内存和内存映射的关联1.7 小demo 二、共享内存操作命令 一、共享内存 共享内存允许两个或者多个进程共享物理内存的同一块区域&#xff08;通常被称为段&#xff09;。由于一个共享内存段会称…

CrypTen——基于pytorch的隐私保护机器学习框架

目录 一、CrypTen概述 二、应用场景 三、CrypTen优势 四、CrypTen技术解析 1.基于pytorch的构建基础 2.核心密码学原语 3.加密模型训练流程 五、传统隐私保护技术与CrypTen的对比 1.传统隐私保护技术介绍 2.CrypTen与传统隐私保护技术的区别 六、CrypTen的环境配置…