Flink学习连载第二篇-使用flink编写WordCount(多种情况演示)

使用Flink编写代码,步骤非常固定,大概分为以下几步,只要牢牢抓住步骤,基本轻松拿下:

1. env-准备环境

2. source-加载数据

3. transformation-数据处理转换

4. sink-数据输出

5. execute-执行

DataStream API开发

//nightlies.apache.org/flink/flink-docs-release-1.13/docs/dev/datastream/overview/

0. 添加依赖

<properties><flink.version>1.13.6</flink.version>
</properties><dependencies><dependency><groupId>org.apache.flink</groupId><artifactId>flink-streaming-java_2.11</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-java</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-clients_2.11</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-api-java-bridge_2.11</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-planner-blink_2.11</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-shaded-hadoop-2-uber</artifactId><version>2.7.5-10.0</version></dependency><dependency><groupId>log4j</groupId><artifactId>log4j</artifactId><version>1.2.17</version></dependency><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><version>1.18.24</version></dependency></dependencies><build><extensions><extension><groupId>org.apache.maven.wagon</groupId><artifactId>wagon-ssh</artifactId><version>2.8</version></extension></extensions><plugins><plugin><groupId>org.codehaus.mojo</groupId><artifactId>wagon-maven-plugin</artifactId><version>1.0</version><configuration><!--上传的本地jar的位置--><fromFile>target/${project.build.finalName}.jar</fromFile><!--远程拷贝的地址--><url>scp://root:root@bigdata01:/opt/app</url></configuration></plugin></plugins></build>
  1. 编写代码

package com.bigdata.day01;import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;public class WordCount01 {/*** 1. env-准备环境* 2. source-加载数据* 3. transformation-数据处理转换* 4. sink-数据输出* 5. execute-执行*/public static void main(String[] args) throws Exception {// 导入常用类时要注意   不管是在本地开发运行还是在集群上运行,都这么写,非常方便StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 这个是 自动 ,根据流的性质,决定是批处理还是流处理//env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);// 批处理流, 一口气把数据算出来// env.setRuntimeMode(RuntimeExecutionMode.BATCH);// 流处理,默认是这个  可以通过打印批和流的处理结果,体会流和批的含义env.setRuntimeMode(RuntimeExecutionMode.STREAMING);// 获取数据  多态的写法 DataStreamSource 它是 DataStream 的子类DataStream<String> dataStream01 = env.fromElements("spark flink kafka", "spark sqoop flink", "kakfa hadoop flink");DataStream<String> flatMapStream = dataStream01.flatMap(new FlatMapFunction<String, String>() {@Overridepublic void flatMap(String line, Collector<String> collector) throws Exception {String[] arr = line.split(" ");for (String word : arr) {// 循环遍历每一个切割完的数据,放入到收集器中,就可以形成一个新的DataStreamcollector.collect(word);}}});//flatMapStream.print();// Tuple2 指的是2元组DataStream<Tuple2<String, Integer>> mapStream = flatMapStream.map(new MapFunction<String, Tuple2<String, Integer>>() {@Overridepublic Tuple2<String, Integer> map(String word) throws Exception {return Tuple2.of(word, 1); // ("hello",1)}});DataStream<Tuple2<String, Integer>> sumResult = mapStream.keyBy(new KeySelector<Tuple2<String, Integer>, String>() {@Overridepublic String getKey(Tuple2<String, Integer> tuple2) throws Exception {return tuple2.f0;}// 此处的1 指的是元组的第二个元素,进行相加的意思}).sum(1);sumResult.print();// 执行env.execute();}
}

查看本机的CPU的逻辑处理器的数量,逻辑处理器的数量就是你的分区数量。

12> spark
13> kakfa
11> spark
11> flink
11> kafka
13> hadoop
12> sqoop
13> flink
12> flink前面的数字是分区数,默认跟逻辑处理器的数量有关系。

对结果进行解释:

什么是批,什么是流?

批处理结果:前面的序号代表分区

流处理结果:

也可以通过如下方式修改分区数量:

 env.setParallelism(2);

关于并行度的代码演示:

系统以及算子都可以设置并行度,或者获取并行度

package com.bigdata.day01;import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;public class WordCount01 {/*** 1. env-准备环境* 2. source-加载数据* 3. transformation-数据处理转换* 4. sink-数据输出* 5. execute-执行*/public static void main(String[] args) throws Exception {// 导入常用类时要注意   不管是在本地开发运行还是在集群上运行,都这么写,非常方便StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 这个是 自动 ,根据流的性质,决定是批处理还是流处理//env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);// 批处理流, 一口气把数据算出来// env.setRuntimeMode(RuntimeExecutionMode.BATCH);// 流处理,默认是这个  可以通过打印批和流的处理结果,体会流和批的含义env.setRuntimeMode(RuntimeExecutionMode.STREAMING);// 将任务的并行度设置为2// env.setParallelism(2);// 通过这个获取系统的并行度int parallelism = env.getParallelism();System.out.println(parallelism);// 获取数据  多态的写法 DataStreamSource 它是 DataStream 的子类DataStream<String> dataStream01 = env.fromElements("spark flink kafka", "spark sqoop flink", "kakfa hadoop flink");DataStream<String> flatMapStream = dataStream01.flatMap(new FlatMapFunction<String, String>() {@Overridepublic void flatMap(String line, Collector<String> collector) throws Exception {String[] arr = line.split(" ");for (String word : arr) {// 循环遍历每一个切割完的数据,放入到收集器中,就可以形成一个新的DataStreamcollector.collect(word);}}});// 每一个算子也有自己的并行度,一般跟系统保持一致System.out.println("flatMap的并行度:"+flatMapStream.getParallelism());//flatMapStream.print();// Tuple2 指的是2元组DataStream<Tuple2<String, Integer>> mapStream = flatMapStream.map(new MapFunction<String, Tuple2<String, Integer>>() {@Overridepublic Tuple2<String, Integer> map(String word) throws Exception {return Tuple2.of(word, 1); // ("hello",1)}});DataStream<Tuple2<String, Integer>> sumResult = mapStream.keyBy(new KeySelector<Tuple2<String, Integer>, String>() {@Overridepublic String getKey(Tuple2<String, Integer> tuple2) throws Exception {return tuple2.f0;}// 此处的1 指的是元组的第二个元组,进行相加的意思}).sum(1);sumResult.print();// 执行env.execute();}
}
  1. 打包、上传

文件夹不需要提前准备好,它可以帮我创建

  1. 提交我们自己开发打包的任务
flink run -c com.bigdata.day01.WordCount01 /opt/app/FlinkDemo-1.0-SNAPSHOT.jar

去界面中查看运行结果:

因为你这个是集群运行的,所以标准输出流中查看,假如第一台没有,去第二台查看,一直点。

获取主函数参数工具类

可以通过外部传参的方式给定一个路径

以下代码可以做到,假如给定路径,就获取路径的数据,假如没给,就读取默认数据:

package com.bigdata.day01;import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;public class WordCount02 {/*** 1. env-准备环境* 2. source-加载数据* 3. transformation-数据处理转换* 4. sink-数据输出* 5. execute-执行*/public static void main(String[] args) throws Exception {// 导入常用类时要注意   不管是在本地开发运行还是在集群上运行,都这么写,非常方便StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 这个是 自动 ,根据流的性质,决定是批处理还是流处理//env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);// 批处理流, 一口气把数据算出来// env.setRuntimeMode(RuntimeExecutionMode.BATCH);// 流处理,默认是这个  可以通过打印批和流的处理结果,体会流和批的含义env.setRuntimeMode(RuntimeExecutionMode.STREAMING);// 将任务的并行度设置为2// env.setParallelism(2);// 通过这个获取系统的并行度int parallelism = env.getParallelism();System.out.println(parallelism);// 获取数据  多态的写法 DataStreamSource 它是 DataStream 的子类// 连着写的本质就是 因为每一个算子的返回值都是DataStream的子类,所以可以这么写// 以下代码中路径是写死的,能不能通过外部传参进来,当然可以! agrsDataStream<String> dataStream = null;System.out.println(args.length);if(args.length !=0){String path = args[0];dataStream =  env.readTextFile(path);}else{dataStream =  env.fromElements("spark flink kafka", "spark sqoop flink", "kakfa hadoop flink");}dataStream.flatMap(new FlatMapFunction<String, String>() {@Overridepublic void flatMap(String line, Collector<String> collector) throws Exception {String[] arr = line.split(" ");for (String word : arr) {// 循环遍历每一个切割完的数据,放入到收集器中,就可以形成一个新的DataStreamcollector.collect(word);}}}).map(new MapFunction<String, Tuple2<String, Integer>>() {@Overridepublic Tuple2<String, Integer> map(String word) throws Exception {return Tuple2.of(word, 1); // ("hello",1)}}).keyBy(new KeySelector<Tuple2<String, Integer>, String>() {@Overridepublic String getKey(Tuple2<String, Integer> tuple2) throws Exception {return tuple2.f0;}// 此处的1 指的是元组的第二个元组,进行相加的意思}).sum(1).print();// 执行env.execute();}
}

flink run -c com.bigdata.day01.Demo02 FlinkDemo-1.0-SNAPSHOT.jar /home/wc.txt

这样做,跟我们以前的做法还是不一样。以前的运行方式是这样的

flink run /opt/installs/flink/examples/batch/WordCount.jar --input /home/wc.txt

这个写法,传递参数的时候,带有--字样,而我们的没有。

以上代码进行升级,我想将参数前面追加一个 --input 这样,怎么写?

ParameterTool parameterTool = ParameterTool.fromArgs(args);
if(parameterTool.has("output")){path = parameterTool.get("output");
}在代码中的使用:
ParameterTool parameterTool = ParameterTool.fromArgs(args);String output = "";if (parameterTool.has("output")) {output = parameterTool.get("output");System.out.println("指定了输出路径使用:" + output);} else {output = "hdfs://node01:9820/wordcount/output47_";System.out.println("可以指定输出路径使用 --output ,没有指定使用默认的:" + output);}

升级过的代码:

package com.bigdata.day01;import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;public class WordCount02 {/*** 1. env-准备环境* 2. source-加载数据* 3. transformation-数据处理转换* 4. sink-数据输出* 5. execute-执行*/public static void main(String[] args) throws Exception {// 导入常用类时要注意   不管是在本地开发运行还是在集群上运行,都这么写,非常方便StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 这个是 自动 ,根据流的性质,决定是批处理还是流处理//env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);// 批处理流, 一口气把数据算出来// env.setRuntimeMode(RuntimeExecutionMode.BATCH);// 流处理,默认是这个  可以通过打印批和流的处理结果,体会流和批的含义env.setRuntimeMode(RuntimeExecutionMode.STREAMING);// 将任务的并行度设置为2// env.setParallelism(2);// 通过这个获取系统的并行度int parallelism = env.getParallelism();System.out.println(parallelism);// 获取数据  多态的写法 DataStreamSource 它是 DataStream 的子类// 连着写的本质就是 因为每一个算子的返回值都是DataStream的子类,所以可以这么写// 以下代码中路径是写死的,能不能通过外部传参进来,当然可以! agrsDataStream<String> dataStream = null;System.out.println(args.length);if(args.length !=0){String path ;ParameterTool parameterTool = ParameterTool.fromArgs(args);if(parameterTool.has("input")){path = parameterTool.get("input");}else{path = args[0];}dataStream =  env.readTextFile(path);}else{dataStream =  env.fromElements("spark flink kafka", "spark sqoop flink", "kakfa hadoop flink");}dataStream.flatMap(new FlatMapFunction<String, String>() {@Overridepublic void flatMap(String line, Collector<String> collector) throws Exception {String[] arr = line.split(" ");for (String word : arr) {// 循环遍历每一个切割完的数据,放入到收集器中,就可以形成一个新的DataStreamcollector.collect(word);}}}).map(new MapFunction<String, Tuple2<String, Integer>>() {@Overridepublic Tuple2<String, Integer> map(String word) throws Exception {return Tuple2.of(word, 1); // ("hello",1)}}).keyBy(new KeySelector<Tuple2<String, Integer>, String>() {@Overridepublic String getKey(Tuple2<String, Integer> tuple2) throws Exception {return tuple2.f0;}// 此处的1 指的是元组的第二个元组,进行相加的意思}).sum(1).print();// 执行env.execute();}
}

DataStream (Lambda表达式-扩展 了解)

import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;import java.util.Arrays;/*** Desc 演示Flink-DataStream-流批一体API完成批处理WordCount* 使用Java8的lambda表示完成函数式风格的WordCount*/
public class WordCount02 {public static void main(String[] args) throws Exception {//TODO 1.env-准备环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();//env.setRuntimeMode(RuntimeExecutionMode.STREAMING);//指定计算模式为流//env.setRuntimeMode(RuntimeExecutionMode.BATCH);//指定计算模式为批env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);//自动//不设置的话默认是流模式defaultValue(RuntimeExecutionMode.STREAMING)//TODO 2.source-加载数据DataStream<String> dataStream = env.fromElements("flink hadoop spark", "flink hadoop spark", "flink hadoop", "flink");//TODO 3.transformation-数据转换处理//3.1对每一行数据进行分割并压扁/*public interface FlatMapFunction<T, O> extends Function, Serializable {void flatMap(T value, Collector<O> out) throws Exception;}*//*DataStream<String> wordsDS = dataStream.flatMap(new FlatMapFunction<String, String>() {@Overridepublic void flatMap(String value, Collector<String> out) throws Exception {String[] words = value.split(" ");for (String word : words) {out.collect(word);}}});*///注意:Java8的函数的语法/lambda表达式的语法: (参数)->{函数体}DataStream<String> wordsDS = dataStream.flatMap((String value, Collector<String> out) -> {String[] words = value.split(" ");for (String word : words) {out.collect(word);}}).returns(Types.STRING);//3.2 每个单词记为<单词,1>/*public interface MapFunction<T, O> extends Function, Serializable {O map(T value) throws Exception;}*//*DataStream<Tuple2<String, Integer>> wordAndOneDS = wordsDS.map(new MapFunction<String, Tuple2<String, Integer>>() {@Overridepublic Tuple2<String, Integer> map(String value) throws Exception {return Tuple2.of(value, 1);}});*/DataStream<Tuple2<String, Integer>> wordAndOneDS = wordsDS.map((String value) -> Tuple2.of(value, 1)).returns(Types.TUPLE(Types.STRING, Types.INT));//3.3分组//注意:DataSet中分组用groupBy,DataStream中分组用keyBy//KeyedStream<Tuple2<String, Integer>, Tuple> keyedDS = wordAndOneDS.keyBy(0);/*public interface KeySelector<IN, KEY> extends Function, Serializable {KEY getKey(IN value) throws Exception;}*//*KeyedStream<Tuple2<String, Integer>, String> keyedDS = wordAndOneDS.keyBy(new KeySelector<Tuple2<String, Integer>, String>() {@Overridepublic String getKey(Tuple2<String, Integer> value) throws Exception {return value.f0;}});*/KeyedStream<Tuple2<String, Integer>, String> keyedDS = wordAndOneDS.keyBy((Tuple2<String, Integer> value) -> value.f0);//3.4聚合SingleOutputStreamOperator<Tuple2<String, Integer>> result = keyedDS.sum(1);//TODO 4.sink-数据输出result.print();//TODO 5.execute-执行env.execute();}
}

此处有一个大坑,就是使用完lambda表达式以后,需要添加一个returns(Types.STRING); 否则报错,这样的话,使用lambda也不是特别快了。

连着写的版本如下:

package com.bigdata.day01;import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;public class WordCount03 {/*** 1. env-准备环境* 2. source-加载数据* 3. transformation-数据处理转换* 4. sink-数据输出* 5. execute-执行*/public static void main(String[] args) throws Exception {// 导入常用类时要注意   不管是在本地开发运行还是在集群上运行,都这么写,非常方便StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 这个是 自动 ,根据流的性质,决定是批处理还是流处理//env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);// 批处理流, 一口气把数据算出来// env.setRuntimeMode(RuntimeExecutionMode.BATCH);// 流处理,默认是这个  可以通过打印批和流的处理结果,体会流和批的含义//env.setRuntimeMode(RuntimeExecutionMode.STREAMING);// 将任务的并行度设置为2// env.setParallelism(2);// 通过这个获取系统的并行度int parallelism = env.getParallelism();System.out.println(parallelism);// 获取数据  多态的写法 DataStreamSource 它是 DataStream 的子类// 连着写的本质就是 因为每一个算子的返回值都是DataStream的子类,所以可以这么写// 以下代码中路径是写死的,能不能通过外部传参进来,当然可以! agrsDataStream<String> dataStream = null;System.out.println(args.length);if(args.length !=0){String path ;ParameterTool parameterTool = ParameterTool.fromArgs(args);if(parameterTool.has("input")){path = parameterTool.get("input");}else{path = args[0];}dataStream =  env.readTextFile(path);}else{dataStream =  env.fromElements("spark flink kafka", "spark sqoop flink", "kakfa hadoop flink");}dataStream.flatMap((String line, Collector<String> collector) -> {String[] arr = line.split(" ");for (String word : arr) {// 循环遍历每一个切割完的数据,放入到收集器中,就可以形成一个新的DataStreamcollector.collect(word);}}).returns(Types.STRING).map((String word)-> {return Tuple2.of(word, 1); // ("hello",1)}).returns(Types.TUPLE(Types.STRING, Types.INT)).keyBy((Tuple2<String, Integer> tuple2)-> {return tuple2.f0;}).sum(1).print();// 执行env.execute();}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/887344.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

构建高效在线教育:SpringBoot课程管理系统

1系统概述 1.1 研究背景 随着计算机技术的发展以及计算机网络的逐渐普及&#xff0c;互联网成为人们查找信息的重要场所&#xff0c;二十一世纪是信息的时代&#xff0c;所以信息的管理显得特别重要。因此&#xff0c;使用计算机来管理在线课程管理系统的相关信息成为必然。开发…

【Redis_Day6】Hash类型

【Redis_Day6】Hash类型 Hash类型操作hash的命令hset&#xff1a;设置hash中指定的字段&#xff08;field&#xff09;的值&#xff08;value&#xff09;hsetnx&#xff1a;想hash中添加字段并设置值hget&#xff1a;获取hash中指定字段的值hexists&#xff1a;判断hash中是否…

在SQLyog中导入和导出数据库

导入 假如我要导入一个xxx.sql&#xff0c;我就先创建一个叫做xxx的数据库。 然后右键点击导入、执行SQL脚本 选择要导入的数据库文件的位置&#xff0c;点击执行即可 注意&#xff1a; 导入之后记得刷新一下导出 选择你要导出的数据库 右键选择&#xff1a;备份/导出、…

详细教程-Linux上安装单机版的Hadoop

1、上传Hadoop安装包至linux并解压 tar -zxvf hadoop-2.6.0-cdh5.15.2.tar.gz 安装包&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1u59OLTJctKmm9YVWr_F-Cg 提取码&#xff1a;0pfj 2、配置免密码登录 生成秘钥&#xff1a; ssh-keygen -t rsa -P 将秘钥写入认…

实时数据开发 | 怎么通俗理解Flink容错机制,提到的checkpoint、barrier、Savepoint、sink都是什么

今天学Flink的关键技术–容错机制&#xff0c;用一些通俗的比喻来讲这个复杂的过程。参考自《离线和实时大数据开发实战》 需要先回顾昨天发的Flink关键概念 检查点&#xff08;checkpoint&#xff09; Flink容错机制的核心是分布式数据流和状态的快照&#xff0c;从而当分布…

鸿蒙网络编程系列50-仓颉版TCP回声服务器示例

1. TCP服务端简介 TCP服务端是基于TCP协议构建的一种网络服务模式&#xff0c;它为HTTP&#xff08;超文本传输协议&#xff09;、SMTP&#xff08;简单邮件传输协议&#xff09;等高层协议的应用程序提供了可靠的底层支持。在TCP服务端中&#xff0c;服务器启动后会监听一个或…

DataGrip 连接 Redis、TongRDS

连接 Redis 或 TongRDS 有些旧版本 没有 redis 驱动用不了 1&#xff09;选择驱动 2&#xff09;添加连接信息 3&#xff09;测试连接 4&#xff09;保存连接 5&#xff09;使用案例

DevExpress控件 基本使用

DevExpress控件 一、DevExpress简介 1、所有编辑器的公共功能 全部都可以绑定数据&#xff1b; 全部都可以独立使用或用于由 Developer Express 提供的容器控件 (XtraGrid、XtraVerticalGrid、XtraTreeList 和 XtraBars) 内的内置编辑&#xff1b; 全部都使用相同的样式、外…

mybatis学习(一)

声明&#xff1a;该内容来源于动力节点&#xff0c;本人在学习mybatis过程中参考该内容&#xff0c;并自己做了部分笔记&#xff0c;但个人觉得本人做的笔记不如动力节点做的好&#xff0c;故使用动力节点的笔记作为后续mybatis的复习。 一、MyBatis概述 1.1 框架 在文献中看…

C0034.在Ubuntu中安装的Qt路径

Qt安装路径查询 在终端输入qmake -v如上中/usr/lib/x86_64-linux-gnu就是Qt的安装目录&#xff1b;

线程控制方法之wait和sleep的区别

线程控制方法之wait和sleep的区别 wait()和sleep()都是Java线程控制方法&#xff0c;但存在明显区别&#xff1a; 所属与调用&#xff1a;wait()属Object类&#xff0c;需synchronized调用&#xff1b;sleep()属Thread类&#xff0c;可随意调用。锁处理&#xff1a;wait()释放…

Harbor2.11.1生成自签证和配置HTTPS访问

文章目录 HTTPS的工作流程部署Harbor可参考上一篇文章生成自签证书1.修改/etc/hosts文件2.生成证书a.创建存放证书路径b.创建ca.key密钥c.创建ca.crtd.创建给Harbor服务器使用密钥 yunzhidong.harbor.com.keye.创建给Harbor服务器使用证书签名请求文件 yunzhidong.harbor.com.c…

Spring Boot3远程调用工具RestClient

Spring Boot3.2之后web模块提供了一个新的远程调用工具RestClient&#xff0c;它的使用比RestTemplate方便&#xff0c;开箱即用&#xff0c;不需要单独注入到容器之中&#xff0c;友好的rest风格调用。下面简单的介绍一下该工具的使用。 一、写几个rest风格测试接口 RestCont…

svn 崩溃、 cleanup失败 怎么办

在使用svn的过程中&#xff0c;可能出现整个svn崩溃&#xff0c; 例如cleanup 失败的情况&#xff0c;类似于 这时可以下载本贴资源文件并解压。 或者直接访问网站 SQLite Download Page 进行下载 解压后得到 sqlite3.exe 放到发生问题的svn根目录的.svn路径下 右键呼出pow…

[Leetcode小记] 3233. 统计不是特殊数字的数字数量

代码&#xff1a; 方法一&#xff1a;平凡解法(最直观但时间复杂度最高) class Solution {public int nonSpecialCount(int l, int r) {int resr-l1;//初始不是特殊数字的答案为[l,r]范围内数字总数for(int i(int)Math.ceil(Math.sqrt(l));i<(int)Math.floor(Math.sqrt(r))…

jenkins 2.346.1最后一个支持java8的版本搭建

1.jenkins下载 下载地址&#xff1a;Index of /war-stable/2.346.1 2.部署 创建目标文件夹&#xff0c;移动到指定位置 创建一个启动脚本&#xff0c;deploy.sh #!/bin/bash set -eDATE$(date %Y%m%d%H%M) # 基础路径 BASE_PATH/opt/projects/jenkins # 服务名称。同时约定部…

package.json中^1.x.x、~1.x.x、1.x.x有什么区别

目录 包版本号的语义化 包版本号的符号 举例 包版本号的语义化 在开始回答这个问题之前&#xff0c;先简单介绍一下包版本号的语义化。 在npm中&#xff0c;包的版本号通常遵循语义化版本规范&#xff08;Semantic Versioning&#xff09;&#xff0c;即采用 major.minor.p…

el-table :span-method 合并单元格(2.0)

2024.11.23今天我学习了如何使用el-table组件的合并单元格方法&#xff0c;效果如下&#xff1a; 代码如下&#xff1a; <template><div class"container"><el-table :data"table_data" :span-method"object_merge" border>&…

CWT-CNN-SABO-LSSVM | Matlab实现基于CWT-CNN-SABO-LSSVM对滚动轴承的故障诊断

CWT-CNN-SABO-LSSVM | Matlab实现基于CWT-CNN-SABO-LSSVM对滚动轴承的故障诊断 目录 CWT-CNN-SABO-LSSVM | Matlab实现基于CWT-CNN-SABO-LSSVM对滚动轴承的故障诊断分类效果基本描述程序设计参考资料 分类效果 基本描述 基于CWT-CNN-SABO-LSSVM对滚动轴承的故障诊断 matlab代码…

Java基于SSM框架的校园综合服务小程序【附源码、文档】

博主介绍&#xff1a;✌IT徐师兄、7年大厂程序员经历。全网粉丝15W、csdn博客专家、掘金/华为云//InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;&#x1f3…