【智谱开放平台-注册/登录安全分析报告】

前言

由于网站注册入口容易被黑客攻击,存在如下安全问题:

1. 暴力破解密码,造成用户信息泄露

2. 短信盗刷的安全问题,影响业务及导致用户投诉

3. 带来经济损失,尤其是后付费客户,风险巨大,造成亏损无底洞

在这里插入图片描述

所以大部分网站及App 都采取图形验证码或滑动验证码等交互解决方案, 但在机器学习能力提高的当下,连百度这样的大厂都遭受攻击导致点名批评, 图形验证及交互验证方式的安全性到底如何? 请看具体分析

一、 智谱开放平台-会员注册入口

简介:北京智谱华章科技有限公司(简称“智谱”)致力于打造新一代认知智能大模型,专注于做大模型的中国创新。公司合作研发了中英双语千亿级超大规模预训练模型GLM-130B,并基于此推出对话模型ChatGLM,开源单卡版模型ChatGLM-6B。同时,团队还打造了AIGC模型及产品矩阵,包括AI提效助手智谱清言(chatglm.cn)、高效率代码模型CodeGeeX、多模态理解模型CogVLM和文生图模型CogView等。公司践行Model as a Service(MaaS)的市场理念,推出大模型MaaS开放平台(https://open.bigmodel.cn/),打造高效率、通用化的“模型即服务”AI开发新范式。通过认知大模型链接物理世界的亿级用户,智谱基于完整的模型生态和全流程技术支持,为千行百业带来持续创新与变革,加速迈向通用人工智能的时代。
智谱 AI 开放平台提供一系列具有不同功能和定价的大模型,包括通用大模型、超拟人大模型、图像大模型、向量大模型等,并且支持使用您的私有数据对模型进行微调。

在这里插入图片描述

在这里插入图片描述

二、 安全性分析报告:

采用数美的滑动验证码,容易被模拟器绕过甚至逆向后暴力攻击,滑动拼图识别率在 95% 以上。

在这里插入图片描述

三、 测试方法:

前端界面分析,采用的是数美的滑动验证码, 网上有现成的逆向文章及视频参考,不过我们这次不用逆向, 只是采用模拟器的方式,关键点主要模拟器交互、距离识别和轨道算法3部分。

在这里插入图片描述

1. 模拟器交互部分


private static String INDEX_URL = "https://open.bigmodel.cn/login";@Overridepublic RetEntity send(WebDriver driver, String areaCode, String phone) {try {RetEntity retEntity = new RetEntity();driver.get(INDEX_URL);// 输入手机号WebElement phoneElement = ChromeDriverManager.waitElement(driver, By.xpath("//input[contains(@placeholder,'请输入手机号')]"), 10);phoneElement.sendKeys(phone);// 点击发送验证码按钮WebElement sendElemet = driver.findElement(By.xpath("//button/span[contains(text(),'获取验证码')]"));if (sendElemet == null) {return null;}boolean isRobot = true;if (isRobot) {RobotMove.click(947, 591);} else {sendElemet.click();}// 数美滑动按钮Thread.sleep(1000);WebElement tipsElement = ChromeDriverManager.waitElement(driver, By.className("shumei_captcha_slide_tips"), 10);String tips = (tipsElement != null) ? tipsElement.getText() : null;if (tips == null) {System.out.println("tips=" + tips);return null;}WebElement moveElement = driver.findElement(By.className("shumei_captcha_slide_btn"));Actions actions = new Actions(driver);actions.moveToElement(moveElement).perform();Thread.sleep(1000);String spCode = "autohome";long t = System.currentTimeMillis();String path = dataPath + "/" + spCode + "/" + t + "/";// 获取大图WebElement bigElement = driver.findElement(By.xpath("//img[@class='shumei_captcha_loaded_img_bg']"));String bgUrl = bigElement.getAttribute("src");if (bgUrl == null) {System.out.println("bgUrl=" + bgUrl);return retEntity;}File bFile = new File(path + "big.png");FileUtils.copyURLToFile(new URL(bgUrl), bFile);byte[] bigBytes = FileUtils.readFileToByteArray(bFile);// 获取小图WebElement smallElement = driver.findElement(By.xpath("//img[@class='shumei_captcha_loaded_img_fg']"));String smallUrl = smallElement.getAttribute("src");File smllFile = new File(path + "small.png");FileUtils.copyURLToFile(new URL(smallUrl), smllFile);byte[] smallBytes = FileUtils.readFileToByteArray(smllFile);if (smallUrl == null) {System.out.println("smallUrl=" + smallUrl);return retEntity;}String ckSum = GenChecksumUtil.genChecksum(bigBytes);Map<String, Double> outMap = cv2.getOpenCvDistance(ckSum, bigBytes, smallBytes, spCode, 2);// 计算距离BigDecimal openDistanceD = new BigDecimal(outMap.get("minX") * 0.5).setScale(0, BigDecimal.ROUND_HALF_UP);int distince = openDistanceD.intValue();System.out.println("distince=" + distince);ActionMove.move(driver, moveElement, distince);Thread.sleep(1000);WebElement msgElement = ChromeDriverManager.waitElement(driver, By.xpath("//button/span[contains(text(),'s')]"), 10);String msg = (msgElement != null && msgElement.isDisplayed()) ? msgElement.getText() : null;retEntity.setMsg("[" + tips + "->" + msg + "]");if (msg != null && msg.contains("s")) {retEntity.setRet(0);try {((JavascriptExecutor) driver).executeScript("window.sessionStorage.clear();");((JavascriptExecutor) driver).executeScript("window.localStorage.clear();");} catch (Exception ex) {}} else {System.out.println("msg=" + msg);}return retEntity;} catch (Exception e) {System.out.println("phone=" + phone + ",e=" + e.toString());for (StackTraceElement ele : e.getStackTrace()) {System.out.println(ele.toString());}return null;} finally {driver.manage().deleteAllCookies();}}

2. 距离识别

	/*** * @param ckSum* @param bigBytes* @param smallBytes* @param factory* @return { width, maxX }*/public Map<String, Double> getOpenCvDistance(String ckSum, byte bigBytes[], byte smallBytes[], String factory, int border) {try {String basePath = ConstTable.codePath + factory + "/";File baseFile = new File(basePath);if (!baseFile.isDirectory()) {baseFile.mkdirs();}// 小图文件File smallFile = new File(basePath + ckSum + "_s.png");FileUtils.writeByteArrayToFile(smallFile, smallBytes);// 大图文件File bigFile = new File(basePath + ckSum + "_b.png");FileUtils.writeByteArrayToFile(bigFile, bigBytes);// 边框清理(去干扰)byte[] clearBoder = (border > 0) ? ImageIOHelper.clearBoder(smallBytes, border) : smallBytes;File tpFile = new File(basePath + ckSum + "_t.png");FileUtils.writeByteArrayToFile(tpFile, clearBoder);String resultFile = basePath + ckSum + "_o.png";return getWidth(tpFile.getAbsolutePath(), bigFile.getAbsolutePath(), resultFile);} catch (Throwable e) {logger.error("getMoveDistance() ckSum=" + ckSum + " " + e.toString());for (StackTraceElement elment : e.getStackTrace()) {logger.error(elment.toString());}return null;}}/*** Open Cv 图片模板匹配* * @param tpPath*            模板图片路径* @param bgPath*            目标图片路径* @return { width, maxX }*/public Map<String, Double> getWidth(String tpPath, String bgPath, String resultFile) {try {Map<String, Integer> hlMap = new HashMap<String, Integer>();Rect rectCrop = clearWhite(tpPath, hlMap);Mat g_tem = Imgcodecs.imread(tpPath);Mat clearMat = g_tem.submat(rectCrop);Mat cvt = new Mat();Imgproc.cvtColor(clearMat, cvt, Imgproc.COLOR_RGB2GRAY);Mat edgesSlide = new Mat();Imgproc.Canny(cvt, edgesSlide, threshold1, threshold2);Mat cvtSlide = new Mat();Imgproc.cvtColor(edgesSlide, cvtSlide, Imgproc.COLOR_GRAY2RGB);Imgcodecs.imwrite(tpPath, cvtSlide);Mat bgOrign = Imgcodecs.imread(bgPath);int rowStart = hlMap.get("minY");int rowEnd = hlMap.get("maxY");// 当滑块的高度和背景图高度一致才做截取boolean isSub = (bgOrign.rows() == hlMap.get("rows"));Mat bgMat = (isSub) ? bgOrign.submat(rowStart, rowEnd, 0, bgOrign.cols()) : bgOrign;// 北京切割Mat edgesBg = new Mat();Imgproc.Canny(bgMat, edgesBg, threshold1, threshold2);Mat cvtBg = new Mat();Imgproc.cvtColor(edgesBg, cvtBg, Imgproc.COLOR_GRAY2RGB);int result_rows = cvtBg.rows() - cvtSlide.rows() + 1;int result_cols = cvtBg.cols() - cvtSlide.cols() + 1;Mat g_result = new Mat(result_rows, result_cols, CvType.CV_32FC1);Imgproc.matchTemplate(cvtBg, cvtSlide, g_result, Imgproc.TM_CCOEFF_NORMED); // 归一化平方差匹配法// 归一化相关匹配法MinMaxLocResult minMaxLoc = Core.minMaxLoc(g_result);Point maxLoc = minMaxLoc.maxLoc;Imgproc.rectangle(cvtBg, maxLoc, new Point(maxLoc.x + cvtSlide.cols(), maxLoc.y + cvtSlide.rows()), new Scalar(0, 0, 255), 1);Imgcodecs.imwrite(resultFile, cvtBg);Map<String, Double> paramMap = new HashMap<String, Double>();paramMap.put("tpWidth", g_tem.cols() * 1.0);paramMap.put("bigWidth", cvtBg.cols() * 1.0);paramMap.put("width", cvtSlide.cols() * 1.0);paramMap.put("minX", maxLoc.x);paramMap.put("maxX", maxLoc.x + cvtSlide.cols());System.out.println("OpenCv2.getWidth() " + paramMap.toString());return paramMap;} catch (Throwable e) {System.out.println("getWidth() " + e.toString());logger.error("getWidth() " + e.toString());for (StackTraceElement elment : e.getStackTrace()) {logger.error(elment.toString());}return null;}}public Rect clearWhite(String smallPath, Map<String, Integer> hlMap) {try {Mat matrix = Imgcodecs.imread(smallPath);int rows = matrix.rows();// height -> yint cols = matrix.cols();// width -> xhlMap.put("rows", rows);hlMap.put("cols", cols);Double rgb;double[] arr;int minX = 255;int minY = 255;int maxX = 0;int maxY = 0;Color c;for (int x = 0; x < cols; x++) {for (int y = 0; y < rows; y++) {arr = matrix.get(y, x);rgb = 0.00;for (int i = 0; i < 3; i++) {rgb += arr[i];}c = new Color(rgb.intValue());int b = c.getBlue();int r = c.getRed();int g = c.getGreen();int sum = r + g + b;if (sum >= 5) {if (x <= minX)minX = x;else if (x >= maxX)maxX = x;if (y <= minY)minY = y;else if (y >= maxY)maxY = y;}}}int boder = 1;if (boder > 0) {minX = (minX > boder) ? minX - boder : 0;maxX = (maxX + boder < cols) ? maxX + boder : cols;minY = (minY > boder) ? minY - boder : 0;maxY = (maxY + boder < rows) ? maxY + boder : rows;}int width = (maxX - minX);int height = (maxY - minY);hlMap.put("minY", minY);hlMap.put("maxY", maxY);System.out.println("openCv2.clearWhite() [" + rows + ", " + cols + "],minX=" + minX + ",minY=" + minY + ",maxX=" + maxX + ",maxY=" + maxY + "->width=" + width + ",height=" + height);Rect rectCrop = new Rect(minX, minY, width, height);return rectCrop;} catch (Throwable e) {StringBuffer er = new StringBuffer("clearWrite() " + e.toString() + "\n");for (StackTraceElement elment : e.getStackTrace()) {er.append(elment.toString() + "\n");}logger.error(er.toString());System.out.println(er.toString());return null;}}

3. 轨道生成及移动算法

/*** 双轴轨道生成算法,主要实现平滑加速和减速* * @param distance* @return*/public static List<Integer[]> getXyTrack(int distance) {boolean isPrn = false;List<Integer[]> track = new ArrayList<Integer[]>();// 移动轨迹try {int a = (int) (distance / 3.0) + random.nextInt(10);int h = 0, current = 0;// 已经移动的距离BigDecimal midRate = new BigDecimal(0.7 + (random.nextInt(10) / 100.00)).setScale(4, BigDecimal.ROUND_HALF_UP);BigDecimal mid = new BigDecimal(distance).multiply(midRate).setScale(0, BigDecimal.ROUND_HALF_UP);// 减速阈值BigDecimal move = null;// 每次循环移动的距离List<Integer[]> subList = new ArrayList<Integer[]>();// 移动轨迹boolean plus = true;Double t = 0.18, v = 0.00, v0;while (current <= distance) {h = random.nextInt(2);if (current > distance / 2) {h = h * -1;}v0 = v;v = v0 + a * t;move = new BigDecimal(v0 * t + 1 / 2 * a * t * t).setScale(4, BigDecimal.ROUND_HALF_UP);// 加速if (move.intValue() < 1)move = new BigDecimal(1L);if (plus) {track.add(new Integer[] { move.intValue(), h });} else {subList.add(0, new Integer[] { move.intValue(), h });}current += move.intValue();if (plus && current >= mid.intValue()) {plus = false;move = new BigDecimal(0L);v = 0.00;}}track.addAll(subList);int bk = current - distance;if (bk > 0) {for (int i = 0; i < bk; i++) {track.add(new Integer[] { -1, h });}}if (isPrn)System.out.println("getMoveTrack(" + midRate + ") a=" + a + ",distance=" + distance + " -> mid=" + mid.intValue() + " size=" + track.size());return track;} catch (Exception e) {System.out.print(e.toString());return null;}}/*** 模拟人工移动* * @param driver* @param element页面滑块* @param distance需要移动距离* @throws InterruptedException*/public static void move(WebDriver driver, WebElement element, int distance) throws InterruptedException {List<Integer[]> track = getXyTrack(distance);if (track == null || track.size() < 1) {System.out.println("move() track=" + track);}int moveY, moveX;StringBuffer sb = new StringBuffer();try {Actions actions = new Actions(driver);actions.clickAndHold(element).perform();Thread.sleep(50);long begin, cost;Integer[] move;int sum = 0;for (int i = 0; i < track.size(); i++) {begin = System.currentTimeMillis();move = track.get(i);moveX = move[0];moveY = move[1];sum += moveX;if (moveX < 0) {if (sb.length() > 0) {sb.append(",");}sb.append(moveX);}actions.moveByOffset(moveX, moveY).perform();cost = System.currentTimeMillis() - begin;if (cost < 5) {Thread.sleep(5 - cost);}}if (sb.length() > 0) {System.out.println("-----backspace[" + sb.toString() + "],sum=" + sum + ",distance=" + distance);}Thread.sleep(180);actions.release(element).perform();Thread.sleep(500);} catch (Exception e) {StringBuffer er = new StringBuffer("move() " + e.toString() + "\n");for (StackTraceElement elment : e.getStackTrace())er.append(elment.toString() + "\n");logger.error(er.toString());System.out.println(er.toString());}}

4. OpenCv 轮廓匹配测试样例:

在这里插入图片描述

四丶结语

北京智谱华章科技有限公司(简称“智谱”)致力于打造新一代认知智能大模型,专注于做大模型的中国创新。公司合作研发了中英双语千亿级超大规模预训练模型GLM-130B,并基于此推出对话模型ChatGLM,开源单卡版模型ChatGLM-6B。同时,团队还打造了AIGC模型及产品矩阵,包括AI提效助手智谱清言(chatglm.cn)、高效率代码模型CodeGeeX、多模态理解模型CogVLM和文生图模型CogView等。公司践行Model as a Service(MaaS)的市场理念,推出大模型MaaS开放平台(https://open.bigmodel.cn/),打造高效率、通用化的“模型即服务”AI开发新范式。通过认知大模型链接物理世界的亿级用户,智谱基于完整的模型生态和全流程技术支持,为千行百业带来持续创新与变革,加速迈向通用人工智能的时代。
作为全球领先AI智能高科技企业,拥有雄厚的技术研发实力, 采用的却是通俗的滑动验证产品, 该产品稳定并且市场占有率很高, 在一定程度上提高了用户体验, 但安全性在机器学习的今天, 已经无法应对攻击了,并且正是由于该产品通俗, 所以在网上破解的文章和教学视频也是大量存在,并且经过验证滑动产品很容易被破解, 所以除了滑动验证方式, 花样百出的产品层出不穷,但本质就是牺牲用户体验来提高安全。

很多人在短信服务刚开始建设的阶段,可能不会在安全方面考虑太多,理由有很多。
比如:“ 需求这么赶,当然是先实现功能啊 ”,“ 业务量很小啦,系统就这么点人用,不怕的 ” , “ 我们怎么会被盯上呢,不可能的 ”等等。

有一些理由虽然有道理,但是该来的总是会来的。前期欠下来的债,总是要还的。越早还,问题就越小,损失就越低。

所以大家在安全方面还是要重视。(血淋淋的栗子!)#安全短信#

戳这里→康康你手机号在过多少网站注册过!!!

谷歌图形验证码在AI 面前已经形同虚设,所以谷歌宣布退出验证码服务, 那么当所有的图形验证码都被破解时,大家又该如何做好防御呢?

>>相关阅读
《腾讯防水墙滑动拼图验证码》
《百度旋转图片验证码》
《网易易盾滑动拼图验证码》
《顶象区域面积点选验证码》
《顶象滑动拼图验证码》
《极验滑动拼图验证码》
《使用深度学习来破解 captcha 验证码》
《验证码终结者-基于CNN+BLSTM+CTC的训练部署套件》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/885777.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何搭建自动化测试框架

软件测试资料领取&#xff1a;[内部资源] 想拿年薪40W的软件测试人员&#xff0c;这份资料必须领取~ 软件测试面试刷题工具&#xff1a;软件测试面试刷题【800道面试题答案免费刷】 关于测试框架的好处&#xff0c;比如快速回归提高测试效率&#xff0c;提高测试覆盖率等这里…

学Linux的第八天

目录 管理进程 概念 程序、进程、线程 进程分类 查看进程 ps命令 unix 风格 bsd风格 GNU风格 top命令 格式 统计信息区 进程信息区&#xff1a;显示了每个进程的运行状态 kill命令 作用 格式 管理进程 概念 程序、进程、线程 程序&#xff1a; 二进制文件&…

使用Matlab建立决策树

综述 除了神经网络模型以外&#xff0c;树模型及基于树的集成学习模型是较为常用的效果较好的预测模型。我们以下先构建一个决策树模型。 决策树算法的优点如下&#xff1a;1、 决策树易于理解和实现&#xff0c;用户在学习过程中不需要了解过多的背景知识&#xff0c;其能够…

安卓主板_基于联发科MTK MT8788平台平板电脑方案_安卓核心板开发板定制

联发科MT8788安卓核心板平台介绍&#xff1a; MTK8788设备具有集成的蓝牙、fm、wlan和gps模块&#xff0c;是一个高度集成的基带平台&#xff0c;包括调制解调器和应用处理子系统&#xff0c;启用LTE/LTE-A和C2K智能设备应用程序。该芯片集成了工作在2.0GHz的ARM Cortex-A73、最…

思科模拟器路由器配置实验

一、实验目的 了解路由器的作用。掌握路由器的基本配置方法。掌握路由器模块的使用和互连方式。 二、实验环境 设备&#xff1a; 2811 路由器 1 台计算机 2 台Console 配置线 1 根网线若干根 拓扑图&#xff1a;实验拓扑图如图 8-1 所示。计算机 IP 地址规划&#xff1a;如表…

Python酷库之旅-第三方库Pandas(206)

目录 一、用法精讲 961、pandas.IntervalIndex.mid属性 961-1、语法 961-2、参数 961-3、功能 961-4、返回值 961-5、说明 961-6、用法 961-6-1、数据准备 961-6-2、代码示例 961-6-3、结果输出 962、pandas.IntervalIndex.length属性 962-1、语法 962-2、参数 …

【前端】CSS入门笔记+案例

目录 CSS css 的语法 1.字体大小 font-size 2.背景颜色 backgrount-color 3.背景的宽高 w h css的三种引入方式 1.内嵌式 2.外联式 3.行内式 选择器 1.标签选择器 2.类选择器 3.id选择器 4.通配符选择器 字体和文本样式 1.字体样式 1.1字体大小 font-size 1.…

java对接微信公众号API,实现扫码关注公众号,触发多条消息回复

一、准备工作 1. 依赖库 这里使用的是binarywang的Wxjava 库&#xff0c;源码地址&#xff1a;https://github.com/binarywang/WxJava。截止发稿前最新版本是4.6.7.B&#xff0c;我采用的是4.5.0版本。 <dependency><groupId>com.github.binarywang</groupId…

一文学习Android中的Property

在 Android 系统中&#xff0c;Property 是一种全局的键值对存储系统&#xff0c;允许不同组件和进程间以轻量级的方式进行数据传递。它主要用于系统配置、状态标识等场景&#xff0c;使得不同进程能够通过属性的设置或获取来通信。property 的核心特性是快速、高效&#xff0…

网络编程——Python简单TCP通信功能代码实践

这里写目录标题 Python简单TCP通信功能代码实践阅读本博客前需准备的几个问题1. 网络通信的机制是什么&#xff1f;2. 什么是python进行网络编程&#xff1f;3. IP地址和端口是什么&#xff1f; 一个简单的TCP通信功能示例&#xff1a;client端.pysever端.pyPYCHARM运行结果 Py…

qt QGesture详解

1、概述 QGesture 是 Qt 框架中用于处理多点触控和手势识别的类。它封装了用户输入的手势信息&#xff0c;如触摸、滑动、捏合、旋转等&#xff0c;使得开发者能够轻松地实现复杂的手势交互功能。QGesture 类本身是一个抽象基类&#xff0c;不能直接实例化&#xff0c;而是通过…

基于C语言——跑得快扑克牌游戏开发指南

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 ✨特色专栏&#xff1a…

7+纯生信,单细胞识别细胞marker+100种机器学习组合建模,机器学习组合建模取代单独lasso回归势在必行!

影响因子&#xff1a;7.3 研究概述&#xff1a; 皮肤黑色素瘤&#xff08;SKCM&#xff09;是所有皮肤恶性肿瘤中最具侵袭性的类型。本研究从GEO数据库下载单细胞RNA测序&#xff08;scRNA-seq&#xff09;数据集&#xff0c;根据原始研究中定义的细胞标记重新注释各种免疫细胞…

丹摩征文活动 | 0基础带你上手经典目标检测模型 Faster-Rcnn

文章目录 &#x1f34b;1 引言&#x1f34b;2 平台优势&#x1f34b;3 丹摩平台服务器配置教程&#x1f34b;4 实操案例&#xff08; Faster-rcnn 项目&#xff09;&#x1f34b;4.1 文件处理&#x1f34b;4.2 环境配置&#x1f34b;4.3 训练模型&#x1f34b;4.4 数据保存并导…

【GPTs】Get Simpsonized:一键变身趣味辛普森角色

博客主页&#xff1a; [小ᶻZ࿆] 本文专栏: AIGC | GPTs应用实例 文章目录 &#x1f4af;GPTs指令&#x1f4af;前言&#x1f4af;Get Simpsonized主要功能适用场景优点缺点使用方式 &#x1f4af;小结 &#x1f4af;GPTs指令 中文翻译&#xff1a; 指令保护和安全规则&…

【C++】 C++游戏设计---五子棋小游戏

1. 游戏介绍 一个简单的 C 五子棋小游戏 1.1 游戏规则&#xff1a; 双人轮流输入下入点坐标横竖撇捺先成五子连线者胜同一坐标点不允许重复输入 1.2 初始化与游戏界面 初始化界面 X 输入坐标后 O 输入坐标后 X 先达到胜出条件 2. 源代码 #include <iostream> #i…

树-好难-疑难_GPT

// // Created by 徐昌真 on 2024/11/10. // #include <iostream> using namespace std;template<typename T> struct ListNode{ //新建链表节点T data; //指向下一个子节点 ListNode< TreeNode<T>* > childHead; 这里的 T 是TreeNde类型的…

Suricata

02-Suricata 一 ICMP流量预警 一条ICMP报文有四个重要内容&#xff0c;可与相应的ICMP关键字相匹配。它们是&#xff1a;消息的类型、代码、ID和序列。 通过ICMP的type进行匹配 alert icmp any any <> any any (msg:"icmp流量预警";itype:8;threshold:type t…

分享一些Kafka集群优化的最佳实践?

以下是一些 Kafka 集群优化的最佳实践&#xff1a; 复制策略配置&#xff1a; 在 server.properties 文件中配置 default.replication.factor 来指定每个主题的默认副本因子&#xff0c;以及 min.insync.replicas 来配置每个分区中必须要保持同步的最小副本数。这可以提高 Kafk…