Python酷库之旅-第三方库Pandas(206)

目录

一、用法精讲

961、pandas.IntervalIndex.mid属性

961-1、语法

961-2、参数

961-3、功能

961-4、返回值

961-5、说明

961-6、用法

961-6-1、数据准备

961-6-2、代码示例

961-6-3、结果输出

962、pandas.IntervalIndex.length属性

962-1、语法

962-2、参数

962-3、功能

962-4、返回值

962-5、说明

962-6、用法

962-6-1、数据准备

962-6-2、代码示例

962-6-3、结果输出

963、pandas.IntervalIndex.get_loc方法

963-1、语法

963-2、参数

963-3、功能

963-4、返回值

963-5、说明

963-6、用法

963-6-1、数据准备

963-6-2、代码示例

963-6-3、结果输出

964、pandas.IntervalIndex.get_indexer方法

964-1、语法

964-2、参数

964-3、功能

964-4、返回值

964-5、说明

964-6、用法

964-6-1、数据准备

964-6-2、代码示例

964-6-3、结果输出

965、pandas.MultiIndex类

965-1、语法

965-2、参数

965-3、功能

965-4、返回值

965-5、说明

965-6、用法

965-6-1、数据准备

965-6-2、代码示例

965-6-3、结果输出

二、推荐阅读

1、Python筑基之旅

2、Python函数之旅

3、Python算法之旅

4、Python魔法之旅

5、博客个人主页

一、用法精讲

961、pandas.IntervalIndex.mid属性
961-1、语法
# 961、pandas.IntervalIndex.mid属性
pandas.IntervalIndex.mid
961-2、参数

        无

961-3、功能

        用于返回IntervalIndex中每个区间的中点,该属性对每个在IntervalIndex中定义的区间计算中间值,结果是一个Float64Index或Int64Index,具体取决于区间的类型。

961-4、返回值

        返回值是一个Float64Index,它包含每个区间的中间值,这些中间值是通过计算每个区间的下限和上限之间的平均值得到的。具体来说,对于每个区间[a, b],中点计算公式为(a + b) / 2。

961-5、说明

        无

961-6、用法
961-6-1、数据准备
961-6-2、代码示例
# 961、pandas.IntervalIndex.mid属性
import pandas as pd
# 创建一个IntervalIndex
interval_index = pd.IntervalIndex.from_tuples([(1, 3), (4, 6), (7, 9)])
# 获取每个区间的中点
mid_points = interval_index.mid
print(mid_points)
961-6-3、结果输出
# 961、pandas.IntervalIndex.mid属性
# Index([2.0, 5.0, 8.0], dtype='float64')
962、pandas.IntervalIndex.length属性
962-1、语法
# 962、pandas.IntervalIndex.length属性
pandas.IntervalIndex.length
962-2、参数

        无

962-3、功能

        计算IntervalIndex中每个区间的长度。

962-4、返回值

        返回一个Int64Index对象,包含每个区间的长度。

962-5、说明

        无

962-6、用法
962-6-1、数据准备
962-6-2、代码示例
# 962、pandas.IntervalIndex.length属性
import pandas as pd
# 创建一个IntervalIndex
intervals = pd.IntervalIndex.from_tuples([(0, 1), (1, 3), (3, 5)])
# 计算区间的长度
lengths = intervals.length
print(lengths)
962-6-3、结果输出
# 962、pandas.IntervalIndex.length属性
# Index([1, 2, 2], dtype='int64')
963、pandas.IntervalIndex.get_loc方法
963-1、语法
# 963、pandas.IntervalIndex.get_loc方法
pandas.IntervalIndex.get_loc(key)
Get integer location, slice or boolean mask for requested label.Parameters:
key
label
Returns:
int if unique index, slice if monotonic index, else mask
963-2、参数

963-2-1、key(必须)表示要查找的区间,可以是一个Interval对象。

963-3、功能

        用于查找指定的区间在IntervalIndex中的位置(索引),该方法可以帮助你快速确定某个区间是否存在于IntervalIndex中,以及它的位置。

963-4、返回值

        返回指定区间的整数索引,如果区间不存在,则会抛出KeyError。

963-5、说明

        无

963-6、用法
963-6-1、数据准备
963-6-2、代码示例
# 963、pandas.IntervalIndex.get_loc方法
import pandas as pd
# 创建一个IntervalIndex
intervals = pd.IntervalIndex.from_tuples([(0, 1), (1, 3), (3, 5)])
# 使用get_loc查找区间的位置
loc1 = intervals.get_loc(pd.Interval(0, 1))
loc2 = intervals.get_loc(pd.Interval(1, 3))
print(loc1)
print(loc2)
963-6-3、结果输出
# 963、pandas.IntervalIndex.get_loc方法
# 0
# 1
964、pandas.IntervalIndex.get_indexer方法
964-1、语法
# 964、pandas.IntervalIndex.get_indexer方法
pandas.IntervalIndex.get_indexer(target, method=None, limit=None, tolerance=None)
Compute indexer and mask for new index given the current index.The indexer should be then used as an input to ndarray.take to align the current data to the new index.Parameters:
targetIndex
method{None, ‘pad’/’ffill’, ‘backfill’/’bfill’, ‘nearest’}, optional
default: exact matches only.pad / ffill: find the PREVIOUS index value if no exact match.backfill / bfill: use NEXT index value if no exact matchnearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value.limitint, optional
Maximum number of consecutive labels in target to match for inexact matches.toleranceoptional
Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations must satisfy the equation abs(index[indexer] - target) <= tolerance.Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index’s type.Returns:
np.ndarray[np.intp]
Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1.NotesReturns -1 for unmatched values, for further explanation see the example below.
964-2、参数

964-2-1、target(必须)array-like,一个包含要查找的值的数组或序列,这些值可以是区间的边界或其他数值。

964-2-2、method(可选,默认值为None)str,指定查找方法,可选值包括:

  • 'pad'或'ffill':查找第一个小于或等于目标值的区间(向前查找)。
  • 'backfill'或'bfill':查找第一个大于目标值的区间(向后查找)。

964-2-3、limit(可选,默认值为None)int,限制结果中可以返回的匹配数量,如果设置了这个参数,返回的位置索引将受到限制。

964-2-4、tolerance(可选,默认值为None)array-like,指定容忍度,以控制可以接受的值范围,如果提供了这个参数,则只有在区间边界内的值才会被视为匹配。

964-3、功能

        检索target中每个元素在IntervalIndex中的索引位置,它能够处理不同的查找策略(如精确匹配、向前查找和向后查找)。

964-4、返回值

        返回一个一维的NumPy数组,其中包含target中每个值在IntervalIndex中的对应索引,如果某个值在区间中没有找到,则返回-1。

964-5、说明

        无

964-6、用法
964-6-1、数据准备
964-6-2、代码示例
# 964、pandas.IntervalIndex.get_indexer方法
import pandas as pd
index = pd.Index(['c', 'a', 'b'])
arr1 = index.get_indexer(['a', 'b', 'x'])
print(arr1)
964-6-3、结果输出
# 964、pandas.IntervalIndex.get_indexer方法
# [ 1  2 -1]
965、pandas.MultiIndex
965-1、语法
# 965、pandas.MultiIndex类
class pandas.MultiIndex(levels=None, codes=None, sortorder=None, names=None, dtype=None, copy=False, name=None, verify_integrity=True)
A multi-level, or hierarchical, index object for pandas objects.Parameters:
levels
sequence of arrays
The unique labels for each level.codes
sequence of arrays
Integers for each level designating which label at each location.sortorder
optional int
Level of sortedness (must be lexicographically sorted by that level).names
optional sequence of objects
Names for each of the index levels. (name is accepted for compat).copy
bool, default False
Copy the meta-data.verify_integrity
bool, default True
Check that the levels/codes are consistent and valid.See alsoMultiIndex.from_arrays
Convert list of arrays to MultiIndex.MultiIndex.from_product
Create a MultiIndex from the cartesian product of iterables.MultiIndex.from_tuples
Convert list of tuples to a MultiIndex.MultiIndex.from_frame
Make a MultiIndex from a DataFrame.Index
The base pandas Index type.NotesSee the user guide for more.
965-2、参数

965-2-1、levels(可选,默认值为None)list,一个包含多个层级(levels)列表的集合,每个层级包含该层的所有唯一值,这些值在创建MultiIndex时定义了每一层的内容。

965-2-2、codes(可选,默认值为None)list,一个包含整数列表的集合,表示各个层级的索引位置,长度应与levels参数对应,指定每个层级中对应值的位置。

965-2-3、sortorder(可选,默认值为None)int,指定索引的排序顺序,可以是一个整数,表示根据哪个层级进行排序。

965-2-4、names(可选,默认值为None)list,为MultiIndex的每一层级指定名称,可以帮助在访问或操作数据时提高可读性,默认情况下,层级没有名称。

965-2-5、dtype(可选,默认值为None)数据类型,指定索引的数据类型,默认情况下会根据提供的数据和层级自动推断。

965-2-6、copy(可选,默认值为False)bool,是否复制输入数据,默认值为False,如果为True,将强制复制数据。

965-2-7、name(可选,默认值为None)string,为整个索引设置一个通用名称(单一名称),当MultiIndex作为某一列的索引时会用到。

965-2-8、verify_integrity(可选,默认值为True)bool,是否验证数组的完整性,确保不含有重复的条目。

965-3、功能

        支持多重层级索引,允许在同一数据结构中组织更多的层次信息,对于处理复杂的数据,如时间序列或分组数据,特别有用。

965-4、返回值

        返回一个pandas.MultiIndex对象,可以将其直接用于pandas的DataFrame或Series中作为索引,其提供的方法和属性使得对多层结构数据的操作非常灵活和高效,包括切片、合并、重设索引等。

965-5、说明

        无

965-6、用法
965-6-1、数据准备
965-6-2、代码示例
# 965、pandas.MultiIndex类
import pandas as pd
# 创建多个层级的索引
levels = [['A', 'B'], [1, 2]]
codes = [[0, 0, 1, 1], [0, 1, 0, 1]]  # A1, A2, B1, B2
# 创建MultiIndex
multi_index = pd.MultiIndex(levels=levels, codes=codes, names=['Letter', 'Number'])
# 创建一个DataFrame,并使用MultiIndex
data = {'Value': [10, 20, 30, 40]}
df = pd.DataFrame(data, index=multi_index)
# 显示DataFrame
print("初始DataFrame:")
print(df)
# 选取A的所有数据
print("\n选择'A'的数据:")
print(df.loc['A'])
# 选择特定层级的值,例如'B'和1
print("\n选择'B'1的数据:")
print(df.loc[('B', 1)])
# 重设索引
df_reset = df.reset_index()
print("\n重设索引后的DataFrame:")
print(df_reset)
# 通过层级进行分组并计算均值
grouped = df.groupby(level='Letter').mean()
print("\n按字母分组计算均值:")
print(grouped)
965-6-3、结果输出
# 965、pandas.MultiIndex类
# 初始DataFrame:
#                Value
# Letter Number       
# A      1          10
#        2          20
# B      1          30
#        2          40
# 
# 选择'A'的数据:
#         Value
# Number       
# 1          10
# 2          20
# 
# 选择'B'1的数据:
# Value    30
# Name: (B, 1), dtype: int64
# 
# 重设索引后的DataFrame:
#   Letter  Number  Value
# 0      A       1     10
# 1      A       2     20
# 2      B       1     30
# 3      B       2     40
# 
# 按字母分组计算均值:
#         Value
# Letter       
# A        15.0
# B        35.0

二、推荐阅读

1、Python筑基之旅
2、Python函数之旅
3、Python算法之旅
4、Python魔法之旅
5、博客个人主页

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/885768.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【前端】CSS入门笔记+案例

目录 CSS css 的语法 1.字体大小 font-size 2.背景颜色 backgrount-color 3.背景的宽高 w h css的三种引入方式 1.内嵌式 2.外联式 3.行内式 选择器 1.标签选择器 2.类选择器 3.id选择器 4.通配符选择器 字体和文本样式 1.字体样式 1.1字体大小 font-size 1.…

java对接微信公众号API,实现扫码关注公众号,触发多条消息回复

一、准备工作 1. 依赖库 这里使用的是binarywang的Wxjava 库&#xff0c;源码地址&#xff1a;https://github.com/binarywang/WxJava。截止发稿前最新版本是4.6.7.B&#xff0c;我采用的是4.5.0版本。 <dependency><groupId>com.github.binarywang</groupId…

一文学习Android中的Property

在 Android 系统中&#xff0c;Property 是一种全局的键值对存储系统&#xff0c;允许不同组件和进程间以轻量级的方式进行数据传递。它主要用于系统配置、状态标识等场景&#xff0c;使得不同进程能够通过属性的设置或获取来通信。property 的核心特性是快速、高效&#xff0…

网络编程——Python简单TCP通信功能代码实践

这里写目录标题 Python简单TCP通信功能代码实践阅读本博客前需准备的几个问题1. 网络通信的机制是什么&#xff1f;2. 什么是python进行网络编程&#xff1f;3. IP地址和端口是什么&#xff1f; 一个简单的TCP通信功能示例&#xff1a;client端.pysever端.pyPYCHARM运行结果 Py…

qt QGesture详解

1、概述 QGesture 是 Qt 框架中用于处理多点触控和手势识别的类。它封装了用户输入的手势信息&#xff0c;如触摸、滑动、捏合、旋转等&#xff0c;使得开发者能够轻松地实现复杂的手势交互功能。QGesture 类本身是一个抽象基类&#xff0c;不能直接实例化&#xff0c;而是通过…

基于C语言——跑得快扑克牌游戏开发指南

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 ✨特色专栏&#xff1a…

7+纯生信,单细胞识别细胞marker+100种机器学习组合建模,机器学习组合建模取代单独lasso回归势在必行!

影响因子&#xff1a;7.3 研究概述&#xff1a; 皮肤黑色素瘤&#xff08;SKCM&#xff09;是所有皮肤恶性肿瘤中最具侵袭性的类型。本研究从GEO数据库下载单细胞RNA测序&#xff08;scRNA-seq&#xff09;数据集&#xff0c;根据原始研究中定义的细胞标记重新注释各种免疫细胞…

丹摩征文活动 | 0基础带你上手经典目标检测模型 Faster-Rcnn

文章目录 &#x1f34b;1 引言&#x1f34b;2 平台优势&#x1f34b;3 丹摩平台服务器配置教程&#x1f34b;4 实操案例&#xff08; Faster-rcnn 项目&#xff09;&#x1f34b;4.1 文件处理&#x1f34b;4.2 环境配置&#x1f34b;4.3 训练模型&#x1f34b;4.4 数据保存并导…

【GPTs】Get Simpsonized:一键变身趣味辛普森角色

博客主页&#xff1a; [小ᶻZ࿆] 本文专栏: AIGC | GPTs应用实例 文章目录 &#x1f4af;GPTs指令&#x1f4af;前言&#x1f4af;Get Simpsonized主要功能适用场景优点缺点使用方式 &#x1f4af;小结 &#x1f4af;GPTs指令 中文翻译&#xff1a; 指令保护和安全规则&…

【C++】 C++游戏设计---五子棋小游戏

1. 游戏介绍 一个简单的 C 五子棋小游戏 1.1 游戏规则&#xff1a; 双人轮流输入下入点坐标横竖撇捺先成五子连线者胜同一坐标点不允许重复输入 1.2 初始化与游戏界面 初始化界面 X 输入坐标后 O 输入坐标后 X 先达到胜出条件 2. 源代码 #include <iostream> #i…

树-好难-疑难_GPT

// // Created by 徐昌真 on 2024/11/10. // #include <iostream> using namespace std;template<typename T> struct ListNode{ //新建链表节点T data; //指向下一个子节点 ListNode< TreeNode<T>* > childHead; 这里的 T 是TreeNde类型的…

Suricata

02-Suricata 一 ICMP流量预警 一条ICMP报文有四个重要内容&#xff0c;可与相应的ICMP关键字相匹配。它们是&#xff1a;消息的类型、代码、ID和序列。 通过ICMP的type进行匹配 alert icmp any any <> any any (msg:"icmp流量预警";itype:8;threshold:type t…

分享一些Kafka集群优化的最佳实践?

以下是一些 Kafka 集群优化的最佳实践&#xff1a; 复制策略配置&#xff1a; 在 server.properties 文件中配置 default.replication.factor 来指定每个主题的默认副本因子&#xff0c;以及 min.insync.replicas 来配置每个分区中必须要保持同步的最小副本数。这可以提高 Kafk…

web前端动画按钮(附源代码)

效果图 源代码 HTML部分 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> …

实操篇:容器服务如何启动系统?

容器服务如何启动系统&#xff1f;容器服务的启动主要依赖Docker和Kubernetes。Docker通过镜像创建和管理容器&#xff0c;支持多种重启策略以确保容器稳定运行。Kubernetes则负责自动化部署、扩展和管理容器化应用&#xff0c;其核心是Pod&#xff0c;包含一个或多个容器。用户…

conda与pip 安装软件包的 代理/换源 解决方案

方案0&#xff1a;终端set proxy set http_proxyhttp://127.0.0.1:7890 set https_proxyhttps://127.0.0.1:7890 export http_proxyhttp://127.0.0.1:7890 export https_proxyhttps://127.0.0.1:7890查看 set | grep proxy echo $https_proxy区别 使用set可以设置和查看变量…

最全Web自动化测试面试题

1、Selenium 中 hidden 或者是 display none 的元素是否可以定位到&#xff1f; 不可以。可以写 JavaScript 将标签中的 hidden 先改为 0&#xff0c;再进行定位元素。 2、Selenium 中如何保证操作元素的成功率&#xff1f;也就是说如何保证我点击的元素一 定是可以点击的&a…

PHP爬虫快速获取京东商品详情(代码示例)

在当今互联网时代&#xff0c;数据的重要性不言而喻。对于电商领域来说&#xff0c;获取商品信息是数据分析、市场研究和价格监控的基础。本文将介绍如何使用PHP编写一个简单的爬虫&#xff0c;以快速获取京东商品的详情信息。 1. 概述 京东是中国领先的电商平台之一&#xff…

一、HTML

一、基础概念 1、浏览器相关知识 这五个浏览器市场份额都非常大&#xff0c;且都有自己的内核。 什么是内核&#xff1a; 内核是浏览器的核心&#xff0c;用于处理浏览器所得到的各种资源。 例如&#xff0c;服务器发送图片、视频、音频的资源&#xff0c;浏览…