Kafka-服务端-副本同步-源码流程

在0.9.0.0之前,Kafka提供了replica lag.max.messages 来控制follower副本最多落后leader副本的消息数量,follower 相对于leader 落后当超过这个数量的时候就判定该follower是失效的,就会踢出ISR,这里的指的是具体的LEO值。

对应的Kafka 也针对这些场景提供了一些控制的参数:前面提到的replica.lag.max.message(以数量为标准衡量是否落后),还有以时间为衡量标准的replica.lag.time.max(多久没有向leader 请求数据)

这些是0.9.0.0之前的版本,这个实现是可以适应大多数环境的,但是存在一个严重的缺陷,当qps持续上升,请求打满之后,很容易造成同步速率下降或者长时间无响应,进而导致很多follower被踢出ISR(在流量高峰时期会挺常见),这就导致使用者需要在不同的场景定制不同的参数配置,但是什么时候有突发流量什么时候去配置并且令其生效,这个事儿不现实,所以说Kafka这一点算是一个缺陷吧。

0.9.0.0 之后提供了一个更加适合的方式来解决这个问题,采用Kafka 落后于消费进度的时间长度来判断是否踢出ISR,这样有效的避免了在突发流量偶然落后于leader 被不合理的踢出ISR的情况,如果长时间落后于leader 这种情况实际故障是需要去踢的也没问题,也就有效的避免了ISR的反复移进移出所带来的代价。

Replica

leader分区会维护自身(本地副本)以及所有follower副本(远程副本)的相关状态,而follower分区只维护自己的状态(本地副本)。

在这里插入图片描述

本地副本的LEO和HW都会更新;远程副本的LEO会更新,HW不会被更新。Leader分区之所以要维护远程副本是为了帮助确定HW。LEO和HW的更新时机:

更新对象更新时机
leader分区本地副本LEO接收到生产者发送的消息,写入本地磁盘后,会更新LEO
leader分区远程副本LEOfollower从leader拉取消息时,会告诉leader从哪个位移开始拉,这个位置就会更新到远程副本的LEO
follower分区本地副本LEO从leader分区拉取消息,写入本地磁盘后,会更新LEO
leader分区本地副本HW1. 更新本地副本LEO后;2. 更新远程副本LEO后。取本地副本和远程副本LEO中的最小值
leader分区远程副本HW不会更新
从leader分区拉取消息,写入本地磁盘后,会更新LEO,比较LEO和leader发来的HW,取两者最小值更新为HW

字段:

brokerId:brokerIdtopicPartition:类型为TopicPartition,副本对应的分区log:副本对应的Log对象,远程副本的此字段为空,通过此字段区分是本地副本还是远程副本highWatermarkMetadata:记录HW的值logEndOffsetMetadata:本地副本对应LEO值(log's end offset),远程副本该值只在follower fetch的时候更新logStartOffset:本地副本对应LSO(log's start offset),远程副本该值只在follower fetch的时候更新lastFetchLeaderLogEndOffset:leader收到follower的FetchRequest时候的LEO值,用来确定follower的lastCaughtUpTimeMslastFetchTimeMs:leader收到follower的FetchRequest时候的时间,用来确定follower的lastCaughtUpTimeMslastCaughtUpTimeMs:该follower的LEO大于等于此时刻leader的LEO,用来确定该follower相对于该分区ISR的lag

方法:

// 通过有无log判断是本地副本还是远程副本
def isLocal: Boolean = log.isDefined
// 获取lastCaughtUpTimeMs
def lastCaughtUpTimeMs = _lastCaughtUpTimeMs
// 
def updateLogReadResult(logReadResult: LogReadResult) {...}// 对于本地副本,不能直接更新LEO,其LEO由Log.logEndOffsetMetadata字段决定private def logEndOffset_=(newLogEndOffset: LogOffsetMetadata) {if (isLocal) {throw new KafkaException(s"xxx")} else {logEndOffsetMetadata = newLogEndOffsettrace(s"xxx")}}// 本地副本和远程副本的LEO获取方式也不同def logEndOffset: LogOffsetMetadata =if (isLocal)log.get.logEndOffsetMetadataelselogEndOffsetMetadata
// LSO的set和get方法与LEO相同,此处省略
// 只有本地副本可以更新HWdef highWatermark_=(newHighWatermark: LogOffsetMetadata) {if (isLocal) {if (newHighWatermark.messageOffset < 0)throw new IllegalArgumentException("High watermark offset should be non-negative")highWatermarkMetadata = newHighWatermarklog.foreach(_.onHighWatermarkIncremented(newHighWatermark.messageOffset))} else {throw new KafkaException(s"Should not set high watermark on partition $topicPartition's non-local replica $brokerId")}}

Partition

Partition负责Replica对象的管理和维护,包括副本角色切换、ISR集合管理等。

字段:

topic和partitionId:此Partition对象代表的Topic名称和分区编号。localBrokerId:当前Broker的id,可以与replicaId比较,从而判断指定的Replica是否表示本地副
本。logManager:当前Broker上的LogManager对象。
zkClient:操作ZooKeeper的辅助类。leaderEpoch:该分区Leader副本的年代信息。leaderReplicaIdOpt:该分区的Leader副本所在broker的id。inSyncReplicas:Set[Replica]类型,该集合维护了该分区的ISR集合,ISR集合是AR集合的子集。allReplicasMap:Pool[Int, Replica]类型,维护了该分区的全部副本的集合(AR集合)的信
息。

Partition中的方法按照功能可以划分为下列5类:

  • 获取(或创建)Replica:getOrCreateReplica()方法
  • 副本的Leader/Follower角色切换:makeLeader()方法和makeFollower()方法
  • ISR集合管理:maybeExpandIsr()方法和maybeShrinkIsr()方法
  • 调用日志存储子系统完成消息写入:appendRecordsToLeader()方法
  • 检测HW的位置:checkEnoughReplicasReachOffset()方法

上述五类方法为ReplicaManager的实现提供了基础支持。其他较为简单的辅助方法不再做详细介绍,请
读者参考源码学习。

获取或创建Replica(done)

getOrCreateReplica()方法主要负责在AR集合(assignedReplicaMap) 中查找指定副本的Replica对象, 如
果查找不到则创建Replica对象并添加到AR集合中管理。 如果创建的是Local Replica, 还会创建(或恢复)
对应的Log并初始化(或恢复) HW。 HW与Log. recoveryPoint类似, 也会需要记录到文件中保存, 在每个log
目录下都有一个replication-offset-checkpoint文件记录了此目录下每个分区的HW。 在ReplicaManager启动时
会读取此文件到highWatermarkCheckpoints这个Map中, 之后会定时更新replication-offset-checkpoint文件。

副本角色切换

Broker会根据KafkaController发送的LeaderAndISRRequest请求控制副本的Leader/Follower角色切换。
Partition.makeLeader()方法是处理LeaderAndISRRequest中比较重要的环节之一, 它会将Local Replica设置成
Leader副本。Partition.makeFollower()方法与Partition.makeLeader()方法类似, 也是处理LeaderAndISRRequest的环节之一。 它的功能是按照PartitionState指定的信息, 将Local Replica设置为Follower副本。

ISR集合管理(done)

Partition除了对副本的Leader/Follower角色进行管理, 还需要管理ISR集合。 随着Follower副本不断与Leader副本进行消息同步, Follower副本的LEO会逐渐后移, 并最终追赶上Leader副本的LEO, 此时该Follower副本就有资格进入ISR集合。 Partition.maybeExpandIsr()方法实现了扩张ISR集合的功能,KafkaApis.handleFetchRequest()处理fetch请求的时候会判断该fetch是否来自follower,如果来自follower则会调用Partition.updateFollowerLogReadResults() -> Partition.maybeExpandIsr()。

在ReplicaManager中使用定时任务周期性地调用maybeShrinkIsr ()方法检查ISR集合中Follower副本与Leader副本之间的同步差距, 并对ISR集合进行缩减。 有一点需要读者注意, 在ISR集合发生增减的时候, 都会将最新的ISR集合保存在ZooKeeper中, 具体的保存路是:/brokers/topics/[topic_name]/partitions/[partitionId]/state。 后面介绍的KafkaController会监听此路径中数据的变化

追加消息(done)

调用日志存储子系统完成消息写入比较简单,后续补充。

内部会调用Log.appendAsLeader()执行真正的写入操作。

然后调用ReplicaManager.tryCompleteDelayedFetch()尝试完成DelayedFetch。

然后调用maybeIncrementLeaderHW()尝试更新高水位HW(ISR可能缩容为1,这时HW就会更新)。

如果高水位HW有变动,则尝试完成所有的Delay操作(DelayedFetch、DelayedProduce、DelayedDeleteRecords)。

检测HW的位置(done)

在检测DelayedProduce的执行条件时, 简单提到了Partition.checkEnoughReplicasReachOffset()方法, 此方法会检测其参数指定的消息是否已经被ISR集合中所有Follower副本同步。

该方法会判断当前leader副本的HW是否已经大于等于传入的偏移量,如果是则说明已经同步,返回true和0错误码,否则还没有同步,返回false和0错误码。注意当某个topic设置了min.insync.replicas参数,如果insync个数不满足,但是HW已经满足,则会返回true和一个20错误码。

ReplicaManager

ReplicaManager的功能是管理一个Broker范围内的Partition信息。ReplicaManager的实现依赖于日志存储子系统、DelayedOperationPurgatory、KafkaScheduler等组件,底层依赖于Partition和Replica。

字段:

logManager:LogManager对象,对分区的读写操作都委托给底层的日志存储子系统。scheduler:KafkaScheduler对象,用于执行ReplicaManager中的周期性定时任务。在ReplicaManager
中总共有4个周期性任务,它们分别是highwatermark-checkpoint任务、isr-expiration任务、isrchange-
propagation、shutdown-idle-replica-alter-log-dirs-thread任务。controllerEpoch:记录KafkaController的年代信息,当重新选举Controller Leader时该字段值会递
增。之后,在ReplicaManager处理来自KafkaController的请求时,会先检测请求中携带的年代信息
是否等于controllerEpoch字段的值,这就避免接收旧Controller Leader发送的请求。这种设计方式在
分布式系统中比较常见。localBrokerId:当前Broker的id,主要用于查找Local Replica。allPartitions:Pool[(String, Int), Partition]类型,其中保存了当前Broker上分配的所有Partition信息。replicaFetcherManager:在ReplicaFetcherManager中管理了多个ReplicaFetcherThread线程,
ReplicaFetcherThread线程会向Leader副本发送FetchRequest请求来获取消息,实现Follower副本与
Leader副本同步。ReplicaFetcherManager对象在ReplicaManager初始化时被创建,后面会详细介绍
ReplicaFetcherManager与ReplicaFetcherThread的功能。highWatermarkCheckpoints:Map[String, OffsetCheckpoint]类型,用于缓存每个log目录与
OffsetCheckpoint之间的对应关系,OffsetCheckpoint记录了对应log目录下的replication-offset-checkpoint文件,该文件中记录了data目录下每个Partition的HW。ReplicaManager中的
highwatermark-checkpoint任务会定时更新replication-offset-checkpoint文件的内容。isrChangeSet:Set[TopicAndPartition]类型,用于记录ISR集合发生变化的分区信息。delayedProducePurgatory、 delayedFetchPurgatory:用于管理DelayedProduce和DelayedFetch的
DelayedOperationPurgatory对象。zkClient:操作ZooKeeper的辅助类。
角色切换

在Kafka集群中会选举一个Broker成为KafkaController的Leader, 它负责管理整个Kafka集群。 Controller Leader根据Partition的Leader副本和Follower副本的状态向对应的Broker节点发送LeaderAndIsrRequest, 这个
请求主要用于副本的角色切换, 即指导Broker将其上的哪些分区的副本切换成Leader角色, 哪些分区的副本切换成Follower角色。

LeaderAndIsrRequest首先由KafkaAPis.handleLeaderAndIsrRequest()方法进行处理, 其核心逻辑是通过
ReplicaManager提供的becomeLeaderOrFollower()方法实现的, 而becomeLeaderOrFollower()又依赖于上一小节介绍的Partition.makeLeader()方法和makeFollower()方法 调用链路:
在这里插入图片描述

追加/读取消息(done)

当Local Replica切换为Leader副本之后, 就可以处理生产者发送的ProducerRequest, 将消息写入到Log中。

调用链路:KafkaApis.handleProduceRequest() -> ReplicaManager.appendRecords() -> ReplicaManager.appendToLocalLog() -> Partition.appendRecordsToLeader() -> Log.appendAsLeader()

主要逻辑在 Partition.appendRecordsToLeader()中,之前已经分析,不再展开。

Leader副本的另一个重要功能是处理FetchRequest进行消息读取。

调用链路:KafkaApis.handleFetchRequest() -> ReplicaManager.fetchMessages() -> ReplicaManager.readFromLocalLog() -> Log.read()

这里主要分析readFromLocalLog()方法,在该方法中会循环遍历拉取所有指定分区中的数据。fetch请求中会指定两个参数,一个是单次最多拉取多少数据,一个是单次单分区最多拉取多少数据(对于follower的fetch这两个默认值分别为10MB和1MB,配置项为replica.fetch.response.max.bytes和replica.fetch.max.bytes,对于消费者客户端还未确认todo)。因此,每个分区最多拉取1MB,当从多个分区中累计拉取到10MB后就会返回。另外需要注意当要读取的分区中的单条消息大于1MB时,如果已经从其他分区读到了数据则不会再读取,否则会读取一条大消息。

副本同步(done)

Follower副本与Leader副本同步的功能由ReplicaFetcherManager组件实现。具体的同步逻辑交由ReplicaFetcherThread线程处理。

AbstractFetcherManager是ReplicaFetcherManager的抽象类,它的addFetcherForPartitions()方法中,会为分区添加fetch线程,每个broker的fetch线程个数由num.replica.fetchers确定,默认为1。注意这里的fetch线程个数是向单个broker同步数据的线程数,实际环境中都是向n个broker拉取数据的,则真实fetch线程个数是num.replica.fetchers乘以n。比如,3个节点的kafka,kafka0会起1个fetch1线程从kafka1中拉取消息,起1个fetch2线程从kafka2中拉取消息。

还要注意,num.replica.fetchers的值并不是真正的fetch线程个数,下面的方法是将某个分区分配给某个fetcher线程的代码。可以看到是根据topic的hash值和partitionId确定一个key,然后根据该key查找map中对应的fetcher线程(没有则新建)进行关联。首先,fetcher线程个数最多为分区个数,即使我们设置了num.replica.fetchers为10000,也不会有10000个fetch线程,其次,即使num.replica.fetchers远小于分区数,实际fetcher线程数可能比num.replica.fetchers更少。试想这样一种场景,num.replica.fetchers为12,Utils.abs(31 * topic.hashCode() + partitionId) % numFetchersPerBroker中的取值没有3和4,则只会有10个fetcher线程。

  private[server] def getFetcherId(topic: String, partitionId: Int) : Int = {lock synchronized {Utils.abs(31 * topic.hashCode() + partitionId) % numFetchersPerBroker}}

分区和fetch线程对应后,就会启动该fetch线程。

核心业务代码在AbstractFetcherThread的doWork()方法中:

  override def doWork() {maybeTruncate()val fetchRequest = inLock(partitionMapLock) {val ResultWithPartitions(fetchRequest, partitionsWithError) = buildFetchRequest(states)if (fetchRequest.isEmpty) {trace(s"There are no active partitions. Back off for $fetchBackOffMs ms before sending a fetch request")partitionMapCond.await(fetchBackOffMs, TimeUnit.MILLISECONDS)}handlePartitionsWithErrors(partitionsWithError)fetchRequest}if (!fetchRequest.isEmpty)processFetchRequest(fetchRequest)}

主要是两个方法:buildFetchRequest()和processFetchRequest()。

buildFetchRequest()是构造拉取请求,有两个参数值得注意,一个是replica.fetch.response.max.bytes,指定了单次最多拉取多少数据,默认是10MB,一个是replica.fetch.max.bytes,指定了单次单分区最多拉取多少数据,默认1MB。

processFetchRequest()是发送请求并对响应进行处理,主要是两个抽象方法fetch()和processPartitionData()。均在ReplicaFetcherThread中实现。fetch()中通过ReplicaFetcherBlockingSend.sendRequest()实现请求的发送并拿到响应,在具体实现中,发送完响应后会一直在while循环中执行client.poll()方法等待,直到拿到响应。processPartitionData()是将拿到的响应数据追加到本地Log,并更新follower副本的HW字段。

在正常逻辑下fetch()会调用processPartitionData()方法追加数据,如果在fetch()过程中遇到了一些异常情况,leader分区会返回错误码Errors.OFFSET_OUT_OF_RANGE,fetch()会调用handleOffsetOutOfRange()方法进行处理。

Errors.OFFSET_OUT_OF_RANGE对应两种情况:

  • 一种是follower的LEO小于leader的logStartOffset。出现的场景:follower下线很久后上线,此时leader的老数据日志已经删了很多,当前的logStartOffset大于follower的LEO。(A)
  • 一种是follower的LEO大于leader的LEO。出现的场景:follower下线,leader继续写入消息;follower上线开始同步消息,但还没同步到能进入ISR集合,此时ISR集合中的副本全部下线,follower变成了leader;旧leader重新上线后变成follower,此时follower的LEO大于新leader的LEO**(B)**

handleOffsetOutOfRange()在实际处理时,会重新发送一个请求获取leader分区的LEO,在此时间段内leader分区可能不断有消息写入,因此第2种情况在当下处理的时候又会变为两种情况:

  • 和之前一致,follower的LEO大于leader的LEO**(B1)**
  • 因为leader分区不断写入消息,此时follower的LEO已经小于leader的LEO**(B2)**

对于情形B1,数据会截断到leader的LEO,并重新发送fetch请求,offset以leader的LEO为准。对于情形B2,会重新发送fetch请求,offset以follower的LEO为准。对于情形A,会删除所有的数据日志,并重新发送fetch请求,以leader的logStartOffset为准。

注意,对于情形B1和B2,都是由于unclean leader election的场景引起的,都有可能出现副本中某一段数据不一致的情况。(在2.0.1版本中没做处理)

副本同步全流程

对于服务端来说,如果follower的拉取请求过来时,没有数据可以返回,则会构造DelayedFetch请求。一方面会放入SystemTimer中,超时后会返回。另一方面会放入Watchers中,等待触发完成时机。

触发时机:主分区中有数据写入时。

对于服务端来说,客户端的生产请求过来,当ack=-1时,会生成DelayedProduce,需要等待follower同步成功后,才能返回响应。DelayedProduce也会放入SystemTimer和Watchers中。

触发时机:接收到follower的fetch请求,或者分区的HW发生了变化

时序如下:

  • 服务端处理客户端发送的生产请求
  • 服务端生成DelayedProduce,等待follower同步数据
  • follower发送fetch请求,请求消息数据
  • 服务端接收fetch请求,获得follower当前的LEO,更新HW,判断DelayedProduce当前还未同步成功
  • follower拿到消息数据返回,追加到自己的Log中,然后继续发送下一个fetch请求
  • 服务端接收fetch请求,获得follower当前的LEO,更新HW,判断DelayedProduce已经同步成功,完成DelayedProduce,放入responseQueue中。

假设某个时刻,leader的HW和LEO都为1000,follower的LEO也为1000。生产者单次请求写入了2条消息。

在这里插入图片描述

关闭副本(done)

当Broker接收到来自KafkaController的StopReplicaRequest请求时, 会关闭其指定的副本, 并根据
StopReplicaRequest中的字段决定是否删除副本对应的Log。 在分区的副本进行重新分配、 关闭Broker等过程中都会使用到此请求, 但是需要注意的是, StopReplicaRequest并不代表一定会删除副本对应的Log, 例如shutdown的场景下就没有必要删除Log。 而在重新分配Partition副本的场景下, 就需要将旧副本及其Log删除。

定时任务(done)

highwatermark-checkpoint任务会周期性地记录每个Replica的HW并保存到其log目录中的replicationoffset-checkpoint文件中。 isr-expiration任务会周期性地调用maybeShrinkIsr()方法检测每个分区是否需要缩减其ISR集合。 isr-change-propagation任务会周期性地将ISR集合发生变化的分区记录到ZooKeeper中。

highwatermark-checkpoint

这个定时任务是在ReplicaManager.becomeLeaderOrFollower()中启动的。目的是确保所有的分区都已经完全populated来避免奇怪的race conditions。

运行间隔由配置项replica.high.watermark.checkpoint.interval.ms指定,默认为5000ms。

主体逻辑在ReplicaManager.checkpointHighWatermarks()方法中实现。

  // Flushes the highwatermark value for all partitions to the highwatermark filedef checkpointHighWatermarks() {val replicas = nonOfflinePartitionsIterator.flatMap { partition =>val replicasList: mutable.Set[Replica] = mutable.Set()partition.getReplica(localBrokerId).foreach(replicasList.add)partition.getReplica(Request.FutureLocalReplicaId).foreach(replicasList.add)replicasList}.filter(_.log.isDefined).toBuffer// 获取全部的Replica对象,按照副本所在的log目录进行分组val replicasByDir = replicas.groupBy(_.log.get.dir.getParent)for ((dir, reps) <- replicasByDir) {// 获取当前log目录下的全部副本的HWval hwms = reps.map(r => r.topicPartition -> r.highWatermark.messageOffset).toMaptry {// 将HW更新到log目录下的replication-offset-checkpoint文件中highWatermarkCheckpoints.get(dir).foreach(_.write(hwms))} catch {case e: KafkaStorageException =>error(s"Error while writing to highwatermark file in directory $dir", e)}}}
isr-change-propagation、isr-expiration和shutdown-idle-replica-alter-log-dirs-thread

这3个定时任务是kafka启动的时候就开始的。具体的调用栈为:

KafkaServer.startup() -> ReplicaManager.startup()。

isr-change-propagation运行间隔为2500ms。

isr-expiration运行间隔由replica.lag.time.max.ms/2指定,默认为10000/2 ms。也即一个follower分区在已经落后之后最多可以在isr中存在1.5倍的replica.lag.time.max.ms时间。内部调用Partition.maybeShrinkIsr()方法。

shutdown-idle-replica-alter-log-dirs-thread运行间隔为10000ms。

MetadataCache(done)

MetadataCache是Broker用来缓存整个集群中全部分区状态的组件。 KafkaController通过向集群中的Broker发送UpdateMetadataRequest来更新其MetadataCache中缓存的数据, 每个Broker在收到该请求后会异步更新MetadataCache中的数据。

字段:

cache: Map[String,Map[Int, UpdateMetadataRequest.PartitionState]]类型, 记录了每个分区的状态, 其中使用PartitionState记录Partition的状态。外层map的key为topic,内层map的key为分区号。aliveBrokers: Map[Int, Broker]类型, 记录了当前可用的Broker信息, 其中使用Broker类记录每个存活Broker的网络位置信息(host、 ip、 port等) 。aliveNodes: Map[Int,Map[ListenerName, Node]]类型, 记录了可用节点的信息

UpdateMetadataRequest由KafkaApis.handleUpdateMetadataRequest()方法处理, 它直接将请求交给ReplicaManager.maybeUpdateMetadataCache()方法处理。

MetadataCache.updateCache()方法中完成了对aliveBrokers、aliveNodes、 cache字段的更新。

生产者和消费者中使用Metadata对象缓存Kafka集群的元信息, 在 Metadata更新时会向服务端发送MetadataRequest。 MetadataRequest首先由KafkaApis. handleTopicMetadataRequest()方法进行处理。

在KafkaApis.getTopicMetadata()方法中完成对MetadataCache的查询, 同时还会根据配置以及Topic的名称决定是否自动创建未知(MetadataCache查找不到) 的Topic。

总结

num.replica.fetchers 单个broker的拉取线程,默认1

replica.fetch.response.max.bytes 单次最多拉取多少数据,默认10MB

replica.fetch.max.bytes 单次单分区最多拉取多少数据,默认1MB

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/864723.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

软考高级之系统分析师及系统架构设计师备考过程记录

0x00 前言 考了两次系分&#xff0c;一次架构&#xff0c;今年系分终于上岸。 在此记录备考过程和一些体会 先说我自己的情况&#xff0c;我本硕都是计算机科班出身&#xff0c;本科的时候搞Java后端开发&#xff0c;硕士搞python和深度学习&#xff0c;但工作之后就基本没碰过…

洞鉴-产品部署及其功能

网络策略&#xff1a;安装&#xff1a; 资源准备 ⼀、系统安装包 https://chaitin-release.oss-cnbeijing.aliyuncs.com/release%2Ff%2F66600aac66bcea13c086319c?Expires1719310707 &OSSAccessKeyIdLTAI5tBpSz7iLYLH51NrVx22&SignaturesOpuVYuKpm9ZBoEzfwiRlJ fLrhQ…

STM32 HAL库读取ID

在stm32f1xx_hal.c文件中由读取ID号的子函数&#xff0c;不同单片机的UID_BASE不同&#xff0c;本单片机用的是STM32F103CBT6,跳转之后可以看到地址为&#xff1a;0x1FFFF7E8 在程序中只需定义一个数组调用读取ID的函数即可 uint32_t UID[3]; while(1) { UID[0] HAL_GetUIDw0…

C盘清理和管理

本篇是C盘一些常用的管理方法&#xff0c;以及定期清理C盘的方法&#xff0c;大部分情况下都能避免C盘爆红。 C盘清理和管理 C盘存储管理查看存储情况清理存储存储感知清理临时文件清理不需要的 迁移存储 磁盘清理桌面存储管理应用存储管理浏览器微信 工具清理 C盘存储管理 查…

VUE3+ AntV Select 选择器:mode=“multiple“和mode=“tags“的区别是什么

文章目录 VUE3 AntV Select 选择器&#xff1a;mode"multiple"和mode"tags"的区别是什么一、解释二、对比演示 VUE3 AntV Select 选择器&#xff1a;mode"multiple"和mode"tags"的区别是什么 一、解释 “mode” 是一个参数&#xff…

SpringSecurity中文文档(Servlet Persisting Authentication)

Persisting Authentication 用户第一次请求受保护的资源时&#xff0c;系统会提示他们输入凭据。提示凭据的最常见方法之一是将用户重定向到登录页。对于请求受保护资源的未经身份验证的用户&#xff0c;总结的 HTTP 交换可能如下所示: Example 1. Unauthenticated User Requ…

VBA字典与数组第十六讲:行、列数不相同的数组间运算规律

《VBA数组与字典方案》教程&#xff08;10144533&#xff09;是我推出的第三套教程&#xff0c;目前已经是第二版修订了。这套教程定位于中级&#xff0c;字典是VBA的精华&#xff0c;我要求学员必学。7.1.3.9教程和手册掌握后&#xff0c;可以解决大多数工作中遇到的实际问题。…

【SpringCloud】Config源码解析

config是一个微服务配置组件&#xff0c;为微服务提供集中化的配置管理服务。config包含服务端和客户端&#xff0c;客户端在启动服务时从服务端拉取配置信息&#xff0c;服务端响应客户端的请求提供具体的配置。本章分析config组件配置信息的拉取过程 1、config服务端 服务端…

一键AI抠图太方便啦!不会ps也能成为修图大师

引言 在数字生活中&#xff0c;抠图技能已成为一项日常且必不可少的技能。无论是需要更换证件照的背景色&#xff0c;还是想要将图像中的主体精确分离。 但并非所有人都精通Photoshop&#xff0c;而且对于简单的任务来说&#xff0c;使用Photoshop可能显得过于复杂。因此&…

1077 韩信点兵

这是一个中国剩余定理的问题。中国剩余定理是数论中的一个定理&#xff0c;它给出了一组同余方程的解的存在性和唯一性。在这个问题中&#xff0c;我们需要找到一个数&#xff0c;使得它对给定的每个质数取余的结果等于给定的余数。 以下是一个使用C实现的解决方案&#xff1a…

Spark2.0

目录 10.3 Spark运行架构 10.3.1 基本概念 10.3.2 架构设计 ​编辑 10.3.3 Spark运行基本流程 Spark运行架构特点 10.3 Spark运行架构 10.3.1 基本概念 RDD &#xff1a;是 Resillient Distributed Dataset &#xff08;弹性分布式数据集&#xff09;的简称&#xff0c;是分…

【Llama 2的使用方法】

Llama 2是Meta AI&#xff08;Facebook的母公司Meta的AI部门&#xff09;开发并开源的大型语言模型系列之一。Llama 2是在其前身Llama模型的基础上进行改进和扩展的&#xff0c;旨在提供更强大的自然语言处理能力和更广泛的应用场景。 以下是Llama 2的一些关键特性和更新点&am…

git主机仓库地址迁移后 git提交代码报错

找到本地电脑的文件known_hosts 2.在代码中git pull 此时终端会有提示 输入ye enter提交便成功了

springboot个人证书管理系统-计算机毕业设计源码16679

摘要 随着信息技术在管理上越来越深入而广泛的应用&#xff0c;管理信息系统的实施在技术上已逐步成熟。本文介绍了个人证书管理系统的开发全过程。通过分析个人证书管理系统管理的不足&#xff0c;创建了一个计算机管理个人证书管理系统的方案。文章介绍了个人证书管理系统的系…

豪掷5400亿,SK海力士加码部署AI赛道

KlipC报道&#xff1a;最新数据显示&#xff0c;韩国6月半导体出口额达到134亿美元&#xff08;约合人民币973亿元&#xff09;&#xff0c;同比增长50.9%。 KlipC分析师表示&#xff0c;这一数据超出市场预期&#xff0c;对于全球半导体产业链来说&#xff0c;是一则利好的消…

2024年【四川省安全员A证】试题及解析及四川省安全员A证模拟考试

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 四川省安全员A证试题及解析根据新四川省安全员A证考试大纲要求&#xff0c;安全生产模拟考试一点通将四川省安全员A证模拟考试试题进行汇编&#xff0c;组成一套四川省安全员A证全真模拟考试试题&#xff0c;学员可通…

前后端数据交互流程

一、前言 用户在浏览器访问一个网站时&#xff0c;会有前后端数据交互的过程&#xff0c;前后端数据交互也有几种的情况&#xff0c;一下就简单的来说明一下 二、原理 介绍前后端交互前先来了解一下浏览器的功能&#xff0c;浏览器通过渲染引擎和 JavaScript 引擎协同工作&am…

简明万年历编制(C语言)

简明万年历编制&#xff08;C语言 &#xff09; 编制万年历的要素&#xff1a; 农历公历对照&#xff0c;显示星期&#xff0c;农历干支年&#xff0c;当年生肖&#xff0c;国定节假日&#xff0c;寒天九九&#xff0c;暑日三伏&#xff0c;入梅出梅&#xff0c;节气时间&#…

剑神诀_单机架设_无需虚拟机_小白专用

前言 今天给大家带来一款单机游戏的架设&#xff1a;剑神诀&#xff0c;一键端 无需虚拟机 如今市面上的资源参差不齐&#xff0c;大部分的都不能运行&#xff0c;本人亲自测试&#xff0c;运行视频如下&#xff1a; 剑神诀 搭建教程 此游戏架设不需要安装虚拟机&#xff0c;…

单模光纤(SMF)市场规模不断增长 非色散位移单模光纤为其代表产品

单模光纤&#xff08;SMF&#xff09;市场规模不断增长 非色散位移单模光纤为其代表产品 单模光纤&#xff08;SMF&#xff09;指芯径为8-10微米&#xff0c;用于单一传输模式的光纤。单模光纤具有频带宽、芯径细、适合长距离传输、传输耗损低、抗干扰能力强、传输速度快等优势…