Jvm针对分代垃圾回收算法配置调优

堆大小设置

年轻代的设置很关键

JVM中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。

典型设置:

java -Xmx3550m -Xms3550m -Xmn2g –Xss128k

-Xmx3550m:设置JVM最大可用内存为3550M。

-Xms3550m:设置JVM促使内存为3550m。此值可以设置与-Xmx相同,以避免每次垃圾回收完成后JVM重新分配内存。

-Xmn2g:设置年轻代大小为2G。整个堆大小=年轻代大小 + 年老代大小 + 持久代大小。持久代一般固定大小为64m,所以增大年轻代后,将会减小年老代大小。此值对系统性能影响较大,Sun官方推荐配置为整个堆的3/8。

-Xss128k:设置每个线程的堆栈大小。JDK5.0以后每个线程堆栈大小为1M,以前每个线程堆栈大小为256K。更具应用的线程所需内存大小进行调整。在相同物理内存下,减小这个值能生成更多的线程。但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在3000~5000左右。

java -Xmx3550m -Xms3550m -Xss128k -XX:NewRatio=4 -XX:SurvivorRatio=4 -XX:MaxPermSize=16m -XX:MaxTenuringThreshold=0

-XX:NewRatio=4:设置年轻代(包括Eden和两个Survivor区)与年老代的比值(除去持久代)。设置为4,则年轻代与年老代所占比值为1:4,年轻代占整个堆栈的1/5

-XX:SurvivorRatio=4:设置年轻代中Eden区与Survivor区的大小比值。设置为4,则两个Survivor区与一个Eden区的比值为2:4,一个Survivor区占整个年轻代的1/6

-XX:MaxPermSize=16m:设置持久代大小为16m。

-XX:MaxTenuringThreshold=0:设置垃圾最大年龄。如果设置为0的话,则年轻代对象不经过Survivor区,直接进入年老代。对于年老代比较多的应用,可以提高效率。如果将此值设置为一个较大值,则年轻代对象会在Survivor区进行多次复制,这样可以增加对象再年轻代的存活时间,增加在年轻代即被回收的概论。

回收器选择

JVM给了三种选择:串行收集器、并行收集器、并发收集器,但是串行收集器只适用于小数据量的情况,所以这里的选择主要针对并行收集器和并发收集器。默认情况下,JDK5.0以前都是使用串行收集器,如果想使用其他收集器需要在启动时加入相应参数。JDK5.0以后,JVM会根据当前系统配置进行判断。

吞吐量优先的并行收集器

如上文所述,并行收集器主要以到达一定的吞吐量为目标,适用于科学技术和后台处理等。

典型配置:

java -Xmx3800m -Xms3800m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20

-XX:+UseParallelGC:选择垃圾收集器为并行收集器。此配置仅对年轻代有效。即上述配置下,年轻代使用并发收集,而年老代仍旧使用串行收集。

-XX:ParallelGCThreads=20:配置并行收集器的线程数,即:同时多少个线程一起进行垃圾回收。此值最好配置与处理器数目相等。

java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20 -XX:+UseParallelOldGC

-XX:+UseParallelOldGC:配置年老代垃圾收集方式为并行收集。JDK6.0支持对年老代并行收集。

java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC  -XX:MaxGCPauseMillis=100

-XX:MaxGCPauseMillis=100:设置每次年轻代垃圾回收的最长时间,如果无法满足此时间,JVM会自动调整年轻代大小,以满足此值。

n java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC  -XX:MaxGCPauseMillis=100 -XX:+UseAdaptiveSizePolicy

-XX:+UseAdaptiveSizePolicy:设置此选项后,并行收集器会自动选择年轻代区大小和相应的Survivor区比例,以达到目标系统规定的最低相应时间或者收集频率等,此值建议使用并行收集器时,一直打开。

响应时间优先的并发收集器

如上文所述,并发收集器主要是保证系统的响应时间,减少垃圾收集时的停顿时间。适用于应用服务器、电信领域等。

典型配置:

java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:ParallelGCThreads=20 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC

-XX:+UseConcMarkSweepGC:设置年老代为并发收集。测试中配置这个以后,-XX:NewRatio=4的配置失效了,原因不明。所以,此时年轻代大小最好用-Xmn设置。

-XX:+UseParNewGC: 设置年轻代为并行收集。可与CMS收集同时使用。JDK5.0以上,JVM会根据系统配置自行设置,所以无需再设置此值。

java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseConcMarkSweepGC -XX:CMSFullGCsBeforeCompaction=5 -XX:+UseCMSCompactAtFullCollection

-XX:CMSFullGCsBeforeCompaction:由于并发收集器不对内存空间进行压缩、整理,所以运行一段时间以后会产生“碎片”,使得运行效率降低。此值设置运行多少次GC以后对内存空间进行压缩、整理。

-XX:+UseCMSCompactAtFullCollection:打开对年老代的压缩。可能会影响性能,但是可以消除碎片

辅助信息

JVM提供了大量命令行参数,打印信息,供调试使用。主要有以下一些:

-XX:+PrintGC:输出形式:[GC 118250K->113543K(130112K), 0.0094143 secs] [Full GC 121376K->10414K(130112K), 0.0650971 secs]

-XX:+PrintGCDetails:输出形式:[GC [DefNew: 8614K->781K(9088K), 0.0123035 secs] 118250K->113543K(130112K), 0.0124633 secs] [GC [DefNew: 8614K->8614K(9088K), 0.0000665 secs][Tenured: 112761K->10414K(121024K), 0.0433488 secs] 121376K->10414K(130112K), 0.0436268 secs]

-XX:+PrintGCTimeStamps -XX:+PrintGC:PrintGCTimeStamps可与上面两个混合使用
输出形式:11.851: [GC 98328K->93620K(130112K), 0.0082960 secs]

-XX:+PrintGCApplicationConcurrentTime:打印每次垃圾回收前,程序未中断的执行时间。可与上面混合使用。输出形式:Application time: 0.5291524 seconds

-XX:+PrintGCApplicationStoppedTime:打印垃圾回收期间程序暂停的时间。可与上面混合使用。输出形式:Total time for which application threads were stopped: 0.0468229 seconds

-XX:PrintHeapAtGC: 打印GC前后的详细堆栈信息。输出形式:

34.702: [GC {Heap before gc invocations=7:

def new generation   total 55296K, used 52568K [0x1ebd0000, 0x227d0000, 0x227d0000)

eden space 49152K,  99% used [0x1ebd0000, 0x21bce430, 0x21bd0000)

from space 6144K,  55% used [0x221d0000, 0x22527e10, 0x227d0000)

to   space 6144K,   0% used [0x21bd0000, 0x21bd0000, 0x221d0000)

tenured generation   total 69632K, used 2696K [0x227d0000, 0x26bd0000, 0x26bd0000)

the space 69632K,   3% used [0x227d0000, 0x22a720f8, 0x22a72200, 0x26bd0000)

compacting perm gen  total 8192K, used 2898K [0x26bd0000, 0x273d0000, 0x2abd0000)

   the space 8192K,  35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00, 0x273d0000)

ro space 8192K,  66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00, 0x2b3d0000)

rw space 12288K,  46% used [0x2b3d0000, 0x2b972060, 0x2b972200, 0x2bfd0000)

34.735: [DefNew: 52568K->3433K(55296K), 0.0072126 secs] 55264K->6615K(124928K)Heap after gc invocations=8:

def new generation   total 55296K, used 3433K [0x1ebd0000, 0x227d0000, 0x227d0000)

eden space 49152K,   0% used [0x1ebd0000, 0x1ebd0000, 0x21bd0000)

  from space 6144K,  55% used [0x21bd0000, 0x21f2a5e8, 0x221d0000)

  to   space 6144K,   0% used [0x221d0000, 0x221d0000, 0x227d0000)

tenured generation   total 69632K, used 3182K [0x227d0000, 0x26bd0000, 0x26bd0000)

the space 69632K,   4% used [0x227d0000, 0x22aeb958, 0x22aeba00, 0x26bd0000)

compacting perm gen  total 8192K, used 2898K [0x26bd0000, 0x273d0000, 0x2abd0000)

   the space 8192K,  35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00, 0x273d0000)

   ro space 8192K,  66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00, 0x2b3d0000)

   rw space 12288K,  46% used [0x2b3d0000, 0x2b972060, 0x2b972200, 0x2bfd0000)

}

, 0.0757599 secs]

-Xloggc:filename:与上面几个配合使用,把相关日志信息记录到文件以便分析。

常见配置汇总

堆设置

  -Xms:初始堆大小

  -Xmx:最大堆大小

  -XX:NewSize=n:设置年轻代大小

  -XX:NewRatio=n:设置年轻代和年老代的比值。如:为3,表示年轻代与年老代比值为1:3,年轻代占整个年轻代年老代和的1/4

  -XX:SurvivorRatio=n:年轻代中Eden区与两个Survivor区的比值。注意Survivor区有两个。如:3,表示Eden:Survivor=3:2,一个Survivor区占整个年轻代的1/5

  -XX:MaxPermSize=n:设置持久代大小

收集器设置

  -XX:+UseSerialGC:设置串行收集器

  -XX:+UseParallelGC:设置并行收集器

  -XX:+UseParalledlOldGC:设置并行年老代收集器

  -XX:+UseConcMarkSweepGC:设置并发收集器

垃圾回收统计信息

  -XX:+PrintGC

  -XX:+PrintGCDetails

  -XX:+PrintGCTimeStamps

  -Xloggc:filename

并行收集器设置

  -XX:ParallelGCThreads=n:设置并行收集器收集时使用的CPU数。并行收集线程数。

  -XX:MaxGCPauseMillis=n:设置并行收集最大暂停时间

  -XX:GCTimeRatio=n:设置垃圾回收时间占程序运行时间的百分比。公式为1/(1+n)

并发收集器设置

  -XX:+CMSIncrementalMode:设置为增量模式。适用于单CPU情况。

  -XX:ParallelGCThreads=n:设置并发收集器年轻代收集方式为并行收集时,使用的CPU数。并行收集线程数。

调优总结

年轻代大小选择

响应时间优先的应用:尽可能设大,直到接近系统的最低响应时间限制(根据实际情况选择)。在此种情况下,年轻代收集发生的频率也是最小的。同时,减少到达年老代的对象。

吞吐量优先的应用:尽可能的设置大,可能到达Gbit的程度。因为对响应时间没有要求,垃圾收集可以并行进行,一般适合8CPU以上的应用。

年老代大小选择

响应时间优先的应用:年老代使用并发收集器,所以其大小需要小心设置,一般要考虑并发会话率会话持续时间等一些参数。如果堆设置小了,可以会造成内存碎片、高回收频率以及应用暂停而使用传统的标记清除方式;如果堆大了,则需要较长的收集时间。最优化的方案,一般需要参考以下数据获得:

  1. 并发垃圾收集信息

  2. 持久代并发收集次数

  3. 传统GC信息

  4. 花在年轻代和年老代回收上的时间比例

减少年轻代和年老代花费的时间,一般会提高应用的效率

吞吐量优先的应用

一般吞吐量优先的应用都有一个很大的年轻代和一个较小的年老代。原因是,这样可以尽可能回收掉大部分短期对象,减少中期的对象,而年老代尽存放长期存活对象。

较小堆引起的碎片问题

因为年老代的并发收集器使用标记、清除算法,所以不会对堆进行压缩。当收集器回收时,他会把相邻的空间进行合并,这样可以分配给较大的对象。但是,当堆空间较小时,运行一段时间以后,就会出现“碎片”,如果并发收集器找不到足够的空间,那么并发收集器将会停止,然后使用传统的标记、清除方式进行回收。如果出现“碎片”,可能需要进行如下配置:

    1. -XX:+UseCMSCompactAtFullCollection:使用并发收集器时,开启对年老代的压缩。

    2. -XX:CMSFullGCsBeforeCompaction=0:上面配置开启的情况下,这里设置多少次Full GC后,对年老代进行压缩

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/857688.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java中实现Callable方式创建线程

一、为啥要引入Callable 在前面讲了通过继承Thread和实现Runnable方式创建线程的区别,那为什么有了Runnable还要引入Callable?下面通过实现Runnable方式的弊端给出答案 实现Runnable方式的弊端: package java.lang; FunctionalInterface public inte…

宁波银行票据案例解读,要注入科技赋能票据新形式

随着科技的飞速发展,金融行业正迎来一场前所未有的变革。作为一家以科技创新为驱动的现代化银行,宁波银行在这场变革中积极探索,宁波银行票据案例之后持续通过引入先进技术,为客户提供更加高效、智能的金融服务。 宁波银行推出的…

1095 解码PAT准考证(测试点3)

solution 测试点3超时&#xff1a;命令为3时&#xff0c;用unordered_map而非map&#xff0c;否则会超时 #include<iostream> #include<string> #include<algorithm> #include<unordered_map> using namespace std; const int maxn 1e4 10; struct…

2024山东大学软件学院创新项目实训(9)使用OpenCompass进行模型评估

下载好OpenCompassData-core-20231110.zip 之后&#xff0c;解压压缩包 unzip OpenCompassData-core-20231110.zip 运行代码&#xff1a; python run.py --datasets ceval_gen --hf-path /hy-tmp/7B21/merged --tokenizer-path /hy-tmp/7B21/merged --tokenizer-kwargs p…

步步精:连接器领域的卓越品牌

自1987年成立以来&#xff0c;步步精坐落于美丽的旅游城市——温州市乐清虹桥镇&#xff0c;被誉为“国家电子主体生产基地”、“国家精密模具制造基地”。公司拥有7大厂区、9大事业部&#xff0c;800名专职员工&#xff0c;致力于提供高品质的连接器解决方案。注册商标“BBJCO…

家庭成员目标管理系统设计

一、项目背景与目标 随着现代社会对家庭教育的重视&#xff0c;家庭成员之间的目标设定与达成成为家庭和谐与进步的关键。本项目旨在设计一个家庭成员目标管理系统&#xff0c;通过系统化的方式帮助家庭成员设定、追踪和达成个人及家庭目标&#xff0c;从而提升家庭成员的成就感…

百度ai人脸识别项目C#

一、项目描述 本项目通过集成百度AI人脸识别API&#xff0c;实现了人脸检测和识别功能。用户可以上传图片&#xff0c;系统将自动识别人脸并返回识别结果。 二、开发环境 Visual Studio 2019或更高版本.NET Framework 4.7.2或更高版本AForge.NET库百度AI平台人脸识别API 三、…

从网络配置文件中提取PEAP凭据

我的一位同事最近遇到了这样一种情况&#xff1a;他可以物理访问使用802.1X连接到有线网络的Windows计算机&#xff0c;同时保存了用于身份验证的用户凭据&#xff0c;随后他想提取这些凭据&#xff0c;您可能认为这没什么特别的&#xff0c;但是事情却有点崎岖波折…… 如何开…

Android C++系列:C++最佳实践2抽象类

1. 背景 OOP面向对象程序设计的核心是数据抽象&#xff0c;继承和动态绑定。前面的文章我们介绍了使用virtual的虚类实现动态绑定的多态&#xff0c;有时候我们在做抽象时&#xff0c;对于抽象的实体不想让被人实例化&#xff0c;虚类没有这个功能&#xff0c;我们Java里面我们…

攻防世界-5-1

下载文件发现是一个没有尾缀的文件&#xff0c;扔winhex&#xff0c;emmmm还是没看出来 搜了一圈&#xff0c;发现用xortool 得到key之后&#xff0c;跑一下脚本 得到flag&#xff1a; wdflag{You Are Very Smart}

pytest测试框架pytest-sugar插件生成进度条

Pytest提供了丰富的插件来扩展其功能&#xff0c;介绍下插件pytest-sugar&#xff0c;可以帮助我们在控制台中显示彩色的测试结果和进度条&#xff0c;提供失败的堆栈回溯信息。 为了使用 pytest-sugar&#xff0c;需要满足以下条件&#xff1a; Python 3.8 或更高版本pytest…

并行计算之SIMD与SPMD

SIMD (Single Instruction Multiple Data) SIMD&#xff0c;也就是单指令多数据计算&#xff0c;一条指令可以处理多个数据。通过向量寄存器存储多个数据元素&#xff0c;并使用单条指令同时对这些数据元素进行处理&#xff0c;从而提高了计算效率。 代码示例&#xff1a; fl…

联想Y7000P 2023款拆机教程及升级内存教程

0.电脑参数介绍 联想Y7000P 2023电脑&#xff0c;笔者电脑CPU为i7-13700H&#xff0c;14核20线程&#xff1b;标配内存为三星的DDR5-5600MHz-8GB*2&#xff0c;由于电脑CPU限制&#xff0c;实际内存跑的频率为5200MHz; 2个内存插槽&#xff0c;2个固态硬盘插槽。每个内存插槽最…

FineReport报表案例

普通报表 保存的文件类型为 cpt&#xff0c;依靠着单元格的扩展与父子格的关系来实现模板效果&#xff0c;可进行参数查询&#xff0c;填报报表&#xff0c;图表设计等等&#xff0c;但是在分页预览模式下不能在报表主体中展示控件&#xff0c;而且单元格间相互影响&#xff0c…

1.2 DataX 数据同步工具详细介绍

DataX 是阿里巴巴开源的一款高效的数据同步工具&#xff0c;旨在实现多种异构数据源之间的高效数据同步。以下是对 DataX 的详细介绍&#xff1a; 架构 DataX 的架构主要包括以下几个核心组件&#xff1a; DataX Core&#xff1a;负责任务调度、插件加载、日志管理等核心功能…

IDEA 学习之 编译内存问题

目录 1. 正常的 IDEA build 日志2. 编译工具内存不足日志 &#xff08;内存从小变大&#xff09;2.1. 干脆无法启动2.2. Ant 任务执行报错2.3. 内存溢出&#xff1a;超出 GC 上限2.4. 内存溢出&#xff1a;超出 GC 上限&#xff0c;编译报错2.5. 内存溢出&#xff1a; 堆空间2.…

鞋子分类数据集17399张69类别

数据集类型&#xff1a;图像分类用&#xff0c;不可用于目标检测无标注文件 数据集格式&#xff1a;仅仅包含jpg图片&#xff0c;每个类别文件夹下面存放着对应图片 图片数量(jpg文件个数)&#xff1a;17399 分类类别数&#xff1a;69 类别名称:[“0”,“1”,“2”,“3”,“4”…

VisualBox 虚拟机 Ubunut 18.04 在大显示器上黑屏的问题

在小屏幕上显示没有问题&#xff0c;但是移动到大显示器上就黑屏了&#xff0c;并且不能铺满&#xff0c;如下所示 如果我希望它铺满整个屏幕&#xff0c;如何解决呢&#xff1f; 下面是解决方法&#xff1a; 虚拟机底部这个按钮&#xff0c;右键 产生菜单&#xff0c;按这个选…

09--keepalived高可用集群

前言&#xff1a;高可用集群配置是大型网站的一个基础&#xff0c;网站可用性的基础保障之一&#xff0c;这里将对应的概念知识和实操步骤进行整理与收集。 1、基础概念详解 1.1、高可用集群 高可用集群&#xff08;High Availability Cluster&#xff0c;简称HA Cluster&am…

算法训练 | 动态规划Part7 | 198.打家劫舍、213.打家劫舍II、337.打家劫舍III

目录 198.打家劫舍&#xff08;线性&#xff09; 动态规划法 213.打家劫舍II&#xff08;环形&#xff09; 动态规划法 337.打家劫舍III&#xff08;二叉树&#xff09; 动态规划法 198.打家劫舍&#xff08;线性&#xff09; 题目链接&#xff1a;198. 打家劫舍 - 力扣&…